簡易檢索 / 詳目顯示

研究生: 劉政言
Cheng-Yen Liu
論文名稱: 光準直靜態集光器系統設計
Static Concentrator System Design for Light Collimation
指導教授: 黃忠偉
Allen Jong-Woei Whang
口試委員: 胡能忠
Neng-Chung Hu
蕭弘清
Horng-Ching Hsiao
趙涵捷
Han-Chieh Chao
陳省三
Sheng-San Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 77
中文關鍵詞: 靜態集光器偏折元件雙透鏡偏折器複合曲線偏折器日光照明系統太陽能電池太陽能應用
外文關鍵詞: Static Concentrator, Refractional Unit, Double Lenses Refractor (DLR), Compound Conic Refractor (CCR), Daylighting System, Solar Cell, Application of Solar Energy
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出了兩種由數個偏折元件所組成的靜態集光器系統,它們可將傾斜照射的陽光往垂直方向做轉變。其中,偏折元件的外觀為二維長柱形,並且沿著台北的東西方向排列,使它在二維視點上都能接受太陽光全天候的照射,並且縮小其出光角度,達到準直的效果。我們根據向台北中央氣象局索取來的氣象資料來定義我們系統所要準直的角度範圍。接著我們針對不同結構的偏折元件進行設計與探討,並比較個別的性能。為了要評估系統的性能,我們也定義了一個參數用以計算並表達系統的偏折能力。最後,我們分別將兩種靜態集光器系統與本實驗室所開發的太陽能集光板結合,用以改善太陽能集光板的集光效率。


    We present two kinds of static concentrator system made up of several refractional units for changing slanted sunlight to vertical light. The refractional units are two-dimensional cylinder and were placed to face the sun over Taipei. They can receive sunlight all day and reduce the angle of exit light. We used meteorological data from the Central Weather Bureau in Taipei to define the collecting range of our systems. Then we design and discuss the structure of refractional units and compare their performances. For evaluating the performances, we define a parameter to evaluate the refracting capability. Finally, we combine the static concentrator with a collection element design by our Lab to improve the response of the collection element.

    第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第2章 太陽能的優點與其應用 4 2.1 太陽能的優點 4 2.2 太陽能的間接應用法 6 2.2.1 光電效應法 6 2.2.2 光-熱-電-光轉換法 7 2.2.3 太陽能高空發電法 7 2.3 太陽能的直接應用法 8 2.3.1 使用平面反射鏡的一次反射法 8 2.3.2 導光照明法 9 2.3.3 衛星反射鏡法 10 2.4 太陽能應用效率的改善方法 10 2.4.1 太陽追蹤系統 11 2.4.2 靜態集光器 12 2.5 小結 13 第3章 太陽能的環境資料與條件探討 14 3.1 太陽能的能量資料與分析 14 3.1.1 全天空輻射量 14 3.1.2 太陽能的照度轉換 15 3.2 太陽光的角度 18 3.3 小結 20 第4章 偏折元件的原理與設計 22 4.1 雙透鏡偏折器 22 4.1.1 工作原理 22 4.1.2 收光面的分析 25 4.1.3 透鏡種類 27 4.1.4 優化與設計 33 4.2 複合曲線偏折器 38 4.2.1 工作原理 38 4.2.2 複合橢圓型透鏡的設計 39 4.2.3 複合拋物線型集光器的設計 42 4.2.4 零件結合後的缺點與改良 44 4.3 小結 49 第5章 靜態集光器系統之性能與測試 50 5.1 偏折能力的比較 50 5.2 對集光板的效能改進 54 第6章 結論與未來展望 64 6.1 結論 64 6.2 未來展望 65 參考文獻 66

    [1] 楊昌中,能源領域中的奈米科技研究,工業研究院能源與環境研究所,中華民國 95年12月26日。
    [2] Palz, Wolfgang. Solar electricity: An economic approach to solar energy. UNESCO, Butterworth & Co Ltd., London, UK. 1978.
    [3] Miajhe, P., Mouhamed, S., and Haydar, A. The solar cell output power dependence on the angle of incident radiation. Renewable energy 1 (3-4), pp. 519-521. 1991.
    [4] Chen, Y.-M., Lee, C.-H., and Wu, H.-C. Calculation of the optimum installation angle for fixed solar-cell panels based on the genetic algorithm and the simulated-annealing method. IEEE Transactions on Energy Conversion 20 (2), pp. 467-473. 2005.
    [5] Kischkoweit-Lopin, M. An overview of daylighting systems. Solar Energy 73 (2), pp. 77-82. 2002.
    [6] Patil, J. V., Nayak, J. K., and Sundersingh, V. P. Design, fabrication and preliminary testing of a two-axes solar tracking system. RERIC International Energy Journal 19 (1), pp. 15-23. 1997.
    [7] Al-Naima, F. M., and Yaghobian, N. A. Design and construction of a solar tracking system. Solar & wind technology 7 (5), pp. 611-617. 1990.
    [8] Salawu, R. I., and Oduyemi, T. A. Microprocessor controlled solar tracking system. Journal of microcomputer applications 10 (1), pp. 55-62. 1987.
    [9] Dang, Aman. Concentrators: A review. Energy Conversion and Management 26 (1), pp. 11-26. 1986.
    [10] Morimoto, M., and Maruyama, T. Static solar concentrator with vertical flat plate photovoltaic cells and switchable white/transparent bottom plate. Solar Energy Materials and Solar Cells 87 (1-4), pp. 299-309. 2005.
    [11] Yoshioka, K., Goma, S., Kurokawa, K., and Saitoh, T. Improved design of a three-dimensional, static concentrator lens using meteorological data. Progress in Photovoltaics: Research and Applications 7 (1), pp. 61-69. 1999.
    [12] Ries, H., Gordon, J. M., and Lasken, M. High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs. Solar Energy 60 (1), pp. 11-16. 1997.
    [13] Snail, Keith A., O'Gallagher, Joseph J., and Winston, Roland. A stationary evacuated collector with integrated concentrator. Solar energy 33 (5), pp. 441-449. 1984.
    [14] Minano, J. C. Design of static concentrations with the receiver immersed in a dielectric tube. Commission of the European Communities, (Report) EUR, pp. 599-603. 1984.
    [15] Smestad, Greg, and Hamill, Patrick. Concentration of solar radiation by white painted transparent plates. Applied Optics 21 (7), pp. 1298-1306. 1982.
    [16] Terao, A., Daroczi, S. G., Coughlin, S. J., Mulligan, W. P., Swanson, R. M., Hernández, M., Benítez, P., and Miñano, J. C. New developments on the flat-plate micro-concentrator module. Proceddings of the 3rd World Conference on Photovoltaic Energy Conversion A, pp. 861-864. 2003.
    [17] O'Gallagher, J. J., Winston, R., and Gee, R. Nonimaging solar concentrator with near-uniform irradiance for photovoltaic arrays. Proceedings of SPIE - The International Society for Optical Engineering 4446, pp. 60-64. 2001.
    [18] Froehlich, Klaus, Wagemann, Ermit U., Frohn, B., Schulat, J., and Stojanoff, Christo G. Development and fabrication of a hybrid holographic solar concentrator for concurrent generation of electricity and thermal utilization. Proceedings of SPIE - The International Society for Optical Engineering 2017, pp. 311-319. 1993.

    無法下載圖示 全文公開日期 2013/07/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE