簡易檢索 / 詳目顯示

研究生: 丁顯威
Hsien-Wei Ting
論文名稱: 光學級環氧樹脂封裝太陽能電池抗反射之分析
Analysis of Antireflection for Photovoltaic Cells Encapsulated by the Optical Grade Epoxy Resin
指導教授: 郭鴻飛
Hung-Fei Kuo
口試委員: 蔡明忠
Ming-Jong Tsai
彭成瑜
Cheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 73
中文關鍵詞: 時域有限差分法次波長結構太陽能電池光學級環氧樹脂
外文關鍵詞: Finite difference time domain (FDTD), Subwavelength structures, Silicon solar cell, Optical grade epoxy
相關次數: 點閱:321下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於單晶矽太陽能電池,次波長結構在太陽能光電技術裡能有效降低光學上反射的損失。本研究利用時域有限差分法(FDTD)在波長範圍為0.3μm到1.2μm之間模擬太陽能電池上的次波長結構,利用模擬的技術在不同高寬比下評估不同對稱次波長結構的反射率變化。此外本論文也研究在不同厚度的抗反射層鍍膜對單晶矽太陽能電池上光學級幾何結構的反射率影響。根據FDTD分析不同高寬比的反射率顯示三角形結構在環氧樹脂中有效地降低反射損失。根據計算,高寬比為6.0的三角形結構反射率低於0.005(0.5%)。


    For single crystalline silicon solar cells, subwavelength structures (SWSs) applied to photovoltaic (PV) are essential to reduce the reflectance loss. This study investigated the SWSs applied to solar cell surfaces by using finite difference time domain (FDTD) method in the light spectrum from 0.3μm to 1.2μm. Using simulation techniques, the effects of different symmetrical profiles, such as triangular, quadratic, and parabolic, gratings with different aspect ratios were evaluated. Furthermore, this study explored the influence of reflectance reduction in the silicon crystalline solar cell with antireflection coating (ARC). Analyzing the reflectance of different aspect ratios by the FDTD method showed that triangular structures in optical grade epoxy reduced the reflection loss effectively. Based on the calculation, the reflectance was below 0.005 (0.5%) for triangular structures with the aspect ratio of 6.0.

    Abstract I 中文摘要 II 誌謝 III Table of contents IV List of figures VI List of tables X List of abbreviations XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature review 5 1.3 Research objective 6 1.4 Thesis organization 7 Chapter 2 PV module using optical grade epoxy resin 8 2.1 Modules composition and material used 8 2.2 Fabrication process 11 2.3 Module performance characterization 12 2.4 Module efficiency investigation 14 Chapter 3 FDTD numerical algorithm and procedures 16 3.1 Maxwell’s equations 16 3.2 FDTD algorithm 20 3.3 FDTD procedures 24 3.4 Convergence analysis 33 Chapter 4 Texture patterns to enhance PV module performance 38 4.1 Triangular profile 38 4.2 Quadratic profile 47 4.3 Parabolic profile 50 4.4 Isosceles trapezoid profile 53 4.5 Analysis of reflectance in PV module encapsulated by the epoxy 56 Chapter 5 Conclusions and future research 66 5.1 Summary of the results 66 5.2 Comparison of theory and experiment results 67 5.3 Future research 67 References 69 Biography 73

    waves," Journal of Computational Physics, vol. 114, pp. 185-200, 1994.
    [51] A. Taflove, Computation Electrodynamics: The Finite-Difference Time-Domain Method. Bosteon, MA: Artech House, 1995.
    [52] K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics. Boca Raton, FL: CRC Press, 1993.
    [53] P. Grunow and S. Krauter, "Modelling of the Encapsulation Factors for Photovoltaic Modules," in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2006, pp. 2152-2155.

    QR CODE