簡易檢索 / 詳目顯示

研究生: 周啟達
Chi-Ta Chou
論文名稱: 有機分子堆疊排列致高開路電壓有機太陽能電池
Stacking orientation mediation of pentacene and derivatives for high open-circuit voltage organic solar cells
指導教授: 戴龑
Yian Tai
口試委員: 劉進興
Chin-Hsin J. Liu
陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
黃智賢
Jih Shang Hwan
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 153
中文關鍵詞: 有機太陽能電池開路電壓分子排列
外文關鍵詞: VOC
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機太陽能電池中,有機分子的排列堆疊的方式是影響太陽能電池效率的其中一個重要關鍵。本研究利用五聯苯 (pentacene)及其衍生物探討高開路電壓有機太陽能電池。此研究中,分別利用兩個不同的五聯苯衍生物,均在五聯苯的主幹上加上苯環基團,為6,13-dipheynl-pentacene (DP-Penta)及 6,13-Di-bipheynl-4- yl-pentacene (DB-Penta)。利用變角度的X光吸收近邊緣結構(near-edge X-ray absorption fine structure, NEXAFS)量測可得知五聯苯及其衍生物成膜後於基板上具有不同的分子排列,五聯苯為依著長軸站立於PEDOT:PSS表面上,而具有與聯苯主幹垂直之苯環基團的兩個五聯苯衍生物則是平躺於基板表面上。由此材料製做成的小分子有機太陽能電池有很大的差異,利用DB-penta/C60所製作的元件,相對於pentacene/C60的參考標準元件,其開路電壓(Voc)由0.28V提高至0.83V,有明顯的提升。這是因為分子排列平躺著的五聯苯衍生物能夠與上層的C60具有較好的π-π overlap,使得在p-n界面中具有新的電荷分佈,促使真空能階的偏移,更進一步的影響並增加元件的開路電壓。此研究結果可以延伸引用到其他的有機太陽能電池系統,可以有效的增加影響其元件效率。


    Molecular stacking orientation is one of the major factors for high performance in organic solar cells. Here, we study the open-circuit-voltage (VOC) of organic heterojunction photovoltaic cells based on pentacene and its derivatives. Two functionalized forms of pentacene- 6,13-dipheynl-pentacene (DP-Penta) and 6,13-Di-bipheynl-4-yl-pentacene (DB-Penta)– have been used for this study. Different molecular stacking orientations of the pentacene-derivatives have been identified by angle dependent near-edge X-ray absorption fine structure (NEXAFS) measurements. It’s concluded that pentacene molecules stand up on the PEDOT:PSS surface, while functionalized pentacene molecules lie down on the surface upon the modification of additional orthogonal phenyl rings. A significant increase of the VOC from 0.28 to 0.83 V has been observed when a conventional pentacene/C60 cell is replaced by the DB-penta/C60 cell. This result can be attributed to the fact that down-lying molecular stacking orientation of the functionalized pentacene induced a vacuum level (V. L.) shift, resulting in improved VOC of the devices. This approach has important implications for organic electronic devices that comprise multiple organic layers, and particularly for improving the power conversion efficiency of organic photovoltaic cells.

    Chapter 1 Introduction 11 1.1 Photovoltaic Technology Overview 13 1.2 Why Organic Photovoltaic? 16 1.3 OPV Device Architectures 18 1.3.1 Planar Bilayer 18 1.3.2 Bulk Heterojunctions 20 1.3.3 Interfacial Layers 21 1.4 The Importance of Molecular Orientation Effect in OPV 26 1.5 Photovoltaic Device Characterization 29 1.5.1 Efficiency Measurements 29 1.5.2. Equivalent Circuit Model 34 Chapter 2 Knowledge of OPV 36 2.1 Basic Properties of Organic Semiconductors 36 2.1.1 Materials and the Chemical Properties 36 2.1.2 Optical Properties 42 2.1.3 Electric Properties 46 2.1.4 Exciton Diffusion Length, LD 49 2.2 Component Materials of OPV Devices 50 2.2.1 Substrate 50 2.2.2 Transparent Electrode 52 2.2.3 Active Layer 54 2.2.3.1. Phthalocyanines 56 2.2.3.2. Polyacenes 62 2.2.3.3. Other Electron-Donating Materials 63 2.2.3.4. Fullerenes 67 2.2.4. Back Electrode 71 2.3 Interfacial Electronic Structures and Energy Level Alignment 73 2.3.1 Organic Solid Electronic Structure 74 2.3.2 Vacuum Level Definition 77 2.3.3 Interfacial Energy Level Alignment 80 2.3.4 The Factors of Interfacial Dipole Layer 82 Chapter 3 Experimental 86 3.1 Organic Thin Film Deposition 86 3.2 Thin Film Characterization 88 3.2.1 Optical Absorption Spectroscopy 88 3.2.2 Ultraviolet Photoemission Spectroscopy (UPS) 89 3.2.3 Angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) 91 3.3 Device Characterization 91 3.3.1 Device Fabrication 91 3.3.2 Current-Voltage (IV ) Measurement 93 3.3.3 Incident Photon-to-Electron Conversion Efficiency (IPCE) Measurement 93 Chapter 4 Result and Discussion 96 4.1 Basic Introduction and Pentacene Derivatives 96 4.2 Thickness Dependent of Pentacene-Derivatives OPV Devices 99 4.3 Comparison with Reference Cell 109 4.4 Energy Level Alignment of OPV 112 4.5 Molecular Orientation of Donor Materials 119 4.6 C70 for Acceptor Material 124 Chapter 5 Conclusion 130 Reference 131 Appendix-1 149 Appendix-2 151

    1A. H. Cordesman and K. R. Al-Rodhan, the International Energy Outlook 2005, http://www.csis.org/media/csis/pubs/050805_energyoutlook[1].pdf.
    2United Nations Environment Programme (UNEP), Global environment outlook (GEO yearbook 2004/5), www.unep.org/geo/yearbook.
    3http://www.theoildrum.com/node/7282
    4N. Oreskes, Science, 306, 1686 (2004).
    5Commission of the European Communities, Green Paper, 769 (2000).
    6J. W. Tester, E. M. Drake, M. J. Driscoll, M. W. Golay and W. A. Peters, Sustainable
    Energy: Choosing Among Options, The MIT Press (2005).
    7Gratzel, M. Nature, 414, 338 (2001).
    8C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
    9P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
    10M. Chikamatsu, T. Taima, Y. Yoshida, K. Saito, and K. Yase, Appl. Phys. Lett. 84, 127 (2004).
    11C.W. Tang, Appl. Phys. Lett. 48, 183 (1986).
    12S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001).
    13P. Peumans and S.R. Forrest, Appl. Phys. Lett. 79, 123 (2001).
    14Z. R. Hong, C. S. Lee, S. T. Lee, W. L. Li, and Y. Shirota, Appl. Phys. Lett. 81, 2878 (2002).
    15A. Yakimov and S. R. Forrest, Appl. Phys. Lett. 80, 1667 (2002).
    16P. Peumans, S. Uchida, and S. R. Forrest, Nature (London) 425, 158 (2003).
    17F. Yang, and S. R. Forrest, Adv. Mater. 18, 2018 (2006).
    18M. Vogel, S. Doka, Ch. Breyer, M. Ch. Lux-Steiner, and K. Fostiropoulos, Appl. Phys. Lett. 89, 163501 (2006).
    19R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 91, 013508 (2007).
    20Y. Kinohsita, T. Hasobe, and H. Murata, Appl. Phys. Lett. 91, 083518 (2007).
    21X. Tong, R. F. Bailey-Salzman, Guodan Wei, and S. R. Forrest, Appl. Phys. Lett. 93, 173304 (2008).
    22J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 84, 3013 (2004).
    23C.-W Chu, Y. Shao, V. Shrotriya, Y. Yang, Appl. Phys. Lett. 86, 243506 (2005).
    24G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 270, 1789 (1995).
    25J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 376, 498 (1995).
    26F. Yang, M. Shtein, S. R. Forrest, Nat. Mater. 4, 37 (2004).
    27S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, K. Leo, Appl. Phys. Lett. 94, 253303 (2009).
    28S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, K. Leo, Appl. Phys. Lett. 94, 223307 (2009).
    29Organic Photovoltaics; C. Brabec, V. Dyakonov, U. Scherf, Eds.; Wiley-VCH: Weinheim, Germany, (2008).
    30T.-W. Lee, Y. Chung, Adv. Funct. Mater. 18, 2246 (2008).
    31M. M. de Kok, M. Buechel, S. I. E. Vulto, P. van de Weijer, E. A. Meulenkamp, S. H. P. M. de Winter, A. J. G. Mank, H. J. M. Vorstenbosch, C. H. L. Weijtens, V. van Elsbergen, Phys. Status Solidi A 201, 1342 (2004).
    32M. Brumbach, P. A. Veneman, F. S. Marrikar, T. Schulmeyer, A. Simmonds, W. Xia, P. Lee, N. R. Armstrong, Langmuir 23, 11089 (2007).
    33A. W. Hains, T. J. Marks, Appl. Phys. Lett. 92, 023504 (2008).
    34K. Takahashi, S. Suzaka, Y. Sigeyama, T. Yamaguchi, J. Nakamura, K. Murata, Chem. Lett. 36, 762 (2007).
    35H. Yan, P. Lee, N. R. Armstrong, A. Graham, G. A. Evmenenko, P. Dutta, T. J. Marks, J. Am. Chem. Soc. 127, 3172 (2005).
    36P. Peumans, V. Bulović, S. R. Forrest, Appl. Phys. Lett. 76, 2650 (2000).
    37Q. L. Song, M. L. Wang, E. G. Obbard, X. Y. Sun, X. M. Ding, X. Y. Hou, Appl. Phys. Lett. 89, 251118 (2006).
    38H. R. Wu, Q. L. Song, M. L. Wang, F. Y. Li, H. Yang, Y. Wu, C. H. Huang, X. M. Ding, X. Y. Hou, Thin Solid Films 515, 8050 (2007).
    39P. Peumans, S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
    40P. Peumans, V. Bulović, S. R. Forrest, Appl. Phys. Lett. 76, 3855 (2000).
    41T. Stubinger, W. Brutting, J. Appl. Phys. 90, 3632 (2001).
    42J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater. 18, 572 (2006).
    43C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
    44F. Garnier, A. Yasser, R. Hajlaui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, and P. Alnot, J. Am. Chem. Soc. 115, 8716 (1993).
    45K. O. Sylvester-Hvid, J. Phys. Chem. B 110, 2618 (2006).
    46V. D. Bettignies, Y. Nicolas, P. Blanchard, E. Levillain, J.-M. Nunzi, and J. Roncali, Adv. Mater. 15, 1939 (2003).
    47C. Videlot, A. El Kassmi, and D. Fichou, Sol. Energy Mater. Sol. Cells 63, 69 (2000).
    48W. Chen, H. Huang, S. Chen, Y. L. Huang, X. Y. Gao, and A. T. S. Wee, Chem. Mater. 20, 7017 (2008).
    49P. Sullivan, T. S. Jonesa, A. J. Ferguson, and S. Heutz, Appl. Phys. Lett. 91, 233114 (2007).
    50J. Y. Lee, S. Roth, and Y. W. Park, Appl. Phys. Lett. 88, 252106 (2006).
    51V. Coropceanu, J. Cornil, D. A. S. Filho, Y. Olivier, R. Silbey, and J.-L. Bredas, Chem. Rev. 107, 926 (2007).
    52T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, Org. Electron. 8, 702 (2007).
    53W. Chen, D. C. Qi, Y. L. Huang, H. Huang, Y. Z. Wang, S. Chen, X. Y. Gao and A. T. S. Wee, J. Phys. Chem. C 113, 12823 (2009).
    54S. Duhm, G. Heimel, I. Salzmann, H. Glowatzkl, R. L. Johnson, A. Vollmer, J. P. Rabe, and N. Koch, Nat. Mater. 7, 326 (2008).
    55N. Koch, I. Salzmann, R.L. Johnson, J. Pflaum, R. Friedlein, and J. P. Rabe, Org. Electron. 7, 537 (2006).
    56I. Salzmann, S. Duhm, G. Heimel, M. Oehzelt, R. Kniprath, R. L. Johnson, J. P. Rabe, and N. Koch, J. Am. Chem. Soc. 130, 12870 (2008).
    57H. Fukagawa, H. Yamane, T. Kataoka, S. Kera, M. Nakamura, K. Kudo, and N. Ueno, Phys. ReV. B 73, 245310 (2006).
    58H. Yamane, Y. Yabuuchi, H. Fukagawa, S. Kera, K. K. Okudaira, and N. Ueno, J. App. Phys. 99, 093705 (2006).
    59M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. PhotoVoltaics: Res. Appl. 17, 85 (2009).
    60V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater. 16, 2016 (2006).
    61Heliatek. http://www.heliatek.com/en/page/index.php
    62F. W. Taylor, Elementary Climate Physics; Oxford University Press: New York, (2005).
    63M. A. Case, Y. A. Owusu, H. Chapman, T. Dargan, P. Ruscher, Renewable Energy 33, 2645 (2008),.
    64D. R. Myers, K. Emery, C. Gueymard, J. Sol. Energy Eng. 126, 567 (2004).
    65P. M. Sommeling, H. C. Rieffe, J. A.M. v. Roosmalen, A. Schonecker, J. M. Kroon, J. Wienke, A. Hinsch, Sol. Energy Mater. Sol. Cells 62, 399 (2000).
    66S. Ito, H. Matsui, K. Okada, S. Kusano, T. Kitamura, Y. Wada, S. Yanagida, Sol. Energy Mater. Sol. Cells 82, 421 (2004).
    67M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, M. A. Baldo, Science 321, 226 (2008).
    68S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Nat. Photon. 3, 297 (2009).
    69A. L. Fahrenbruch, R. H. Bube, Fundamentals of Solar Cells. Photovoltaic Solar Energy Conversion; Academic Press: New York, (1983).
    70M. D. Perez, C. Borek, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 131, 9281 (2009).
    71Z. E. Ooi, T. L. Tam, A. Sellinger, J. C. deMello, Energy Environ. Sci. 1, 300 (2008).
    72D. Cheyns, H. Gommans, M. Odijk, J. Poortmans, P. Heremans, Sol. Energy Mater. Sol. Cells 91, 399 (2007).
    73P. Bernier, S. Lefrant and G. Bidan, Advances in Syntetic Metals: Twenty Years of Progress in Science and Technology, Elsevier p.99 (1999).
    74Carlo Di Bello, Principles of Organic Chemistry, Decibel-Zanichelli p.93 (1993).
    75H. Hoppe and N. S. Sariciftci, J. Mater. Res. 12, 1924 (2004).
    76 B. A. Gregg, J. Sprague, M. Peterson, J. Phys. Chem. B 101, 5362 (1997).
    77 Z. Liang, A. Nardes, D. Wang, J. J. Berry, D. A. Gregg, Chem. Mater. 21, 4914 (2009).
    78 P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, Adv. Mater. 19, 1551 (2007).
    79 V. M. Kenkre, P. E. Parris, D. Schmidt, Phys. ReV. B: Condens. Matter 32, 4946 (1985).
    80 V. M. Kenkre, Y. M. Wong, Phys. Rev. B: Condens. Matter 22, 5716 (1980).
    81 S. R. Scully, M. D. McGehee, J. Appl. Phys. 100, 034907 (2006).
    82 M. Theander, A. Yartsev, D. Zigmantas, V. Sundstrőm, W. Mammo, M. R. Andersson, O. Inganas, Phys. Rev. B: Condens. Matter 61, 12957 (2000).
    83 V. Bulović, P. E. Burrows, S. R. Forrest, J. A. Cronin, M. E. Thompson, Chem. Phys. 210,1 (1996).
    84 V. Bulović, S. R. Forrest, Chem. Phys. 210, 13 (1996).
    85 R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, S. R. Forrest, J. Appl. Phys. 105, 053711 (2009).
    86A. J. Ferguson, N. Kopidakis, S. E. Shaheen, G. Rumbles, J. Phys. Chem. C 112, 9865 (2008).
    87Z. Liang, A. Nardes, D. Wang, J. J. Berry, B. A. Gregg, Chem. Mater. 21, 4914 (2009).
    88A. K. Pandey, J.-M. Nunzi, Appl. Phys. Lett. 89, 213506 (2006).
    89G. P. Kushto, W. Kim, Z. H. Kafafi, Appl. Phys. Lett. 86, 093502 (2005).
    90J. Danziger, J.-P. Dodelet, P. Lee, K. W. Nebesny, N. R. Armstrong, Chem. Mater. 3, 821 (1991).
    91J. Danziger, J-P. Dodelet, N. R. Armstrong, Chem. Mater. 3, 812 (1991).
    92G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, Opt. Lett. 22, 172 (1997).
    93M. Al-Ibrahim, H. K. Roth, S. Sensfuss, S. Appl. Phys. Lett. 85, 1481 (2004).
    94M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Silvernail, J. J. Brown, Appl. Phys. Lett. 81, 2929 (2002).
    95A. Antony, M. Nisha, R. Manoj, M. K. Jayaraj, Appl. Surf. Sci. 225, 294 (2004).
    96H. Han, J. W. Mayer, T. L. Alford, J. Appl. Phys. 100, 083715 (2006).
    97I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, L. Engstrom, Phys. Rev. B 30, 3240 (1984).
    98C.-P. Chen, T.-C. Tien, B.-T. Ko, Y.-D. Chen, C. Ting, ACS Appl. Mater. Interfaces 1, 741 (2009).
    99D. A. Rider, K. D. Harris, D. Wang, J. Bruce, M. D. Fleischauer, R. T. Tucker, M. J. Brett, J. M. Buriak, ACS Appl. Mater. Interfaces 1, 279 (2009).
    100J. Xue, S. R. Forrest, J. Appl. Phys. 95, 1869 (2004).
    101J. S. Kim, M. Granstrom, R. H. Friend, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys. 84, 6859 (1998).
    102B. Roy, J. D. Perkins, T. Kaydanova, D. L. Young, M. Taylor, A. Miedaner, C. Curtis, H.-J. Kleebe, D. W. Readey, D. S. Ginley, Thin Solid Films 516, 4093 (2008).
    103S. Sheng, G. Fang, C. Li, S. Xu, X. Zhao, Phys. Status Solidi A 203, 1891 (2006).
    104A. N. Banerjee, K. K. Chattopadhyay, Prog. Cryst. Growth Charact. Mater. 50, 52 (2005).
    105C. W. Teplin, T. Kaydanova, D. L. Young, J. D. Perkins, D.S. Ginley, A. Ode, D. W. Ready, Appl. Phys. Lett. 85, 3789 (2004).
    106D. Ginley, B. Roy, A. Ode, C. Warmsingh, Y. Yoshida, P. Parilla, C. Teplin, T. Kaydanova, A. Miedaner, C. Curtis, A. Martinson, T. Coutts, D. Readey, H. Hosono, J. Perkins, Thin Solid Films 445, 193 (2003).
    107H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939 (1997).
    108H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films 236, 27 (1993).
    109M. A. Green, Prog. Photovoltaics: Res. Appl. 17, 347 (2009).
    110H. Kim, G. P. Kushto, R. C. Y. Auyeung, A. Pique, Appl. Phys. A: Mater. Sci. Process. 93, 521 (2008).
    111F. Yang, S. R. Forrest, Adv. Mater. 18, 2018 (2006)
    112J. C. Bernede, L. Cattin, M. Morsli, Y. Berredjem, Sol. Energy Mater. Sol. Cells 92, 1508 (2008).
    113J. C. Bernede, Y. Berredjem, L. Cattin, M. Morsli, Appl. Phys. Lett. 92, 083304 (2008).
    114J.-S. Kim, F. Cacialli, R. Friend, Thin Solid Films 445, 358 (2003).
    115The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, Vols. 11-20, (2003).
    116M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, E. M. N. Mhuircheartaigh, Adv. Mater. 19, 2737 (2007).
    117Z. Bayiyr, S. Merey, E. Hamuryudan, Monatsh. Chem. 134, 1027 (2003).
    118P. Vivo, M. Ojala, V. Chukharev, A. Efimov, H. Lemmetyinen, J. Photochem. Photobiol., A 203, 125 (2009).
    119S. Banerjee, A. P. Parhi, S. S. K. Iyer, S. Kumar, Appl. Phys. Lett. 94, 223303 (2009).
    120L.-G. Yang, H.-Z. Chen, M. Wang, Thin Solid Films 516, 7701 (2008).
    121D. Kurrle, J. Pflaum, Appl. Phys. Lett. 92, 133306 (2008).
    122Y. Terao, H. Sasabe, C. Adachi, Appl. Phys. Lett. 90, 103515 (2007).
    123Y. Harima, S. Furusho, K. Okazaki, Y. Kunugi, K. Yamashita, Thin Solid Films 300, 213 (1997).
    124R. F. Salzman, J. Xue, B. P. Rand, A. Alexander, M. E. Thompson, S. R. Forrest, Org. Electron. 6, 242 (2005).
    125R. D. Gould, Thin Solid Films 125, 63 (1985).
    126P. Sullivan, T. S. Jones, A. J. Ferguson, S. Heutz, Appl. Phys. Lett. 91, 233114 (2007).
    127L. Lozzi, S. Santucci, S. L. Rosa, S. Picozzi, J. Chem. Phys. 121, 1883 (2004).
    128S. Heutz, T. S. Jones, J. Appl. Phys. 92, 3039 (2002).
    129P. Panayotatos, G. Bird, R. Sauers, A. Piechowski, S. Husain, Sol. Cells 21, 301 (1987).
    130S. R. Forrest, L. Y. Leu, F. F. So, W. Y. Yoon, J. Appl. Phys. 66, 5908 (1989).
    131D. Wohrle, D. Meissner, Adv. Mater. 3, 129 (1990).
    132C. Arbour, N. R. Armstrong, R. Brina, G. Collins, J. Danziger, J.-P. Dodelet, P. Lee, K. W. Nebesny, J. Pankow, S. Waite, Mol. Cryst. Liq. Cryst. 183, 307 (1990).
    133M. Hiramoto, H. Fujiwara, M. Yokoyama, Appl. Phys. Lett. 58, 1062 (1991).
    134M. Hiramoto, H. Fujiwara, M. Yokoyama. J. Appl. Phys. 72, 3781 (1992).
    135D. Schlettwein, D. Wohrle, E. Karmann, U. Melville, Chem. Mater. 6, 3 (1994).
    136Schmidt, A.; Chau, L.-K.; Valencia, V. S.; Armstrong, N. R. Chem.
    Mater. 7, 657 (1995).
    137T. Kudo, M. Kimura, K. Hanabusa, H. Shirai, J. Porphyrins Phthalocyanines 2, 231 (1998).
    138Rudiono; F. Kaneko, M. Takeuchi, Appl. Surf. Sci. 142, 598 (1999).
    139T. Kudo, M. Kimura, K. Hanabusa, H. Shirai, J. Porphyrins Phthalocyanines 3, 310 (1999).
    140K. Petritsch, R. H. Friend, A. Lux, G. Rozenberg, S. C. Moratti, A. B. Holmes, Synth. Met. 102, 1776 (1999).
    141 J. Xue, S. R. Forrest, J. Appl. Phys. 95, 1859 (2004).
    142 P. Peumans, S. Uchida, S. R. Forrest, Nature 425, 158 (2003).
    143 T. W. Ng, M. F. Lo, Y. C. Zhou, Z. T. Liu, C. S. Lee, O. Kwon, S. T. Lee, Appl. Phys. Lett. 94, 199304 (2009).
    144 Y. Tanaka, K. Kanai, Y. Ouchi, K. Seki, Chem. Phys. Lett. 441, 63 (2007).
    145 M. Rusu, J. Strotmann, M. Vogel, M. C. Lux-Steiner, K. Fostiropoulos, Appl. Phys. Lett. 90, 153511 (2007).
    146 M. T. Lloyd, J. E. Anthony, G. C. Malliaras, Mater. Today 10, 34 (2007).
    147 A. Pochettino, Acad. Lincei Rend. 15, 355 (1906).
    148 A. K. Pandey, P. E. Shaw, I. D. W. Samuel, J.-M. Nunzi, Appl. Phys. Lett. 94, 103303 (2009).
    149 Y. Kinoshita, T. Hasobe, H. Murata, Appl. Phys. Lett. 91,083518 (2007).
    150 M. T. Lloyd, A. C. Mayer, A. S. Tayi, A. M. Bowen, T. G. Kasen, D. J. Herman, D. A. Mourey, J. E. Anthony, G. G. Malliaras, Org. Electron. 7, 243 (2006).
    151 A. C. Mayer, M. T. Lloyd, D. J. Herman, T. G. Kasen, G. G. Malliaras, Appl. Phys. Lett. 85, 6272 (2004).
    152 T. Taima, J. Sakai, T. Yamanari, K. Saito, Sol. Energy Mater. Sol. Cells 93, 742 (2009).
    153 M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, S. T. Lee, Appl. Phys. Lett. 90, 023504 (2007).
    154 W.–B. Chen, H.-F. Xiang, Z.-X. Xu, B.-P. Yan, V. A. L. Roy, C.-M. Che, P.-T. Lai, Appl. Phys. Lett. 91, 191109 (2007).
    155 M. Shtein, J. Mapel. J. B. Benziger, S. R. Forrest Appl. Phys. Lett. 81, 268 (2002).
    156 A. Vollmer, H. Weiss, S. Rentenberger, I. Salzmann, J. P. Rabe, N. Koch, Surface. Science 600, 4004 (2006).
    157 O. D. Jurchescu, J. Baas, T. T. M. Palstra, Appl. Phys. Lett. 87, 0052102 (2005).
    158K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 128, 8108 (2006).
    159H. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, P. Heremans, Adv. Funct. Mater. 17, 2653 (2007).
    160B. Verreet, S. Schols, D. Cheyns, B. P. Rand, H. Gommans, T. Aernouts, P. Heremans, J. Genoe, J. Mater. Chem. 19, 5295 (2009).
    161C. C. Mattheus, W. Michaelis, C. Kelting, W. S. Durfee, D. Wohrle, D. Schlettwein, Synth. Met. 146, 335 (2004).
    162C. G. Claessens, D. Gonza’lez-Rodriguez, T. Torres, Chem. Rev. 102, 835 (2002).
    163B. Ma, C. H. Woo, Y. Miyamoto, J. M. J. Frechet, Chem. Mater. 21, 1413 (2009).
    164N. Li, B. E. Lassiter, R. R. Lunt, G. Wei, S. R. Forrest, Appl. Phys. Lett. 94, 023307 (2009).
    165G. Martin, G. Rojo, F. Agullo-Lopez, V. R. Ferro, J. M. Garcia de la Vega, M. V. Martinez-Dı’az, T. Torres, I. Ledoux, J. Zyss, J. Phys. Chem. B 106, 13139 (2002).
    166M. T. Lloyd, J. E. Anthony, G. C. Malliaras, Mater. Today 10, 34 (2007).
    167S. Wang, E. I. Mayo, M. D. Perez, L. Griffe, G. Wei, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Appl. Phys. Lett. 94, 233304 (2009).
    168F. Silvestri, M. D. Irwin, L. Beverina, A. Facchetti, G. A. Pagani, T. J. Marks, J. Am. Chem. Soc. 130, 17640 (2008).
    169A. P. Piechowski, G. R. Bird, D. L. Morel, E. L. Stogryn, J. Phys. Chem. 88, 934 (1984).
    170V. Y. Merritt, H. J. Hovel, Appl. Phys. Lett. 29, 414 (1976),.
    171K.-Y. Law, J. Phys. Chem. 91, 5184 (1987).
    172Fullerenes: Principles and Applications; F. Langa, J.-F. Nierengarten, Eds.; Royal Society of Chemistry: Cambridge, (2007).
    173W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 347, 354 (1990).
    174K. Raghavachari, C. M. Rohlfing, J. Phys. Chem. 96, 2463 (1992).
    175J. N. Haddock, X. Zhang, B. Domercq, B. Kippelen, Org. Electron. 6, 182 (2005).
    176H. Imahori, S. Fukuzumi, Adv. Funct. Mater. 14, 525 (2004).
    177D. Bonifazi, O. Enger, F. Diederich, Chem. Soc. Rev. 36, 390 (2007).
    178J. W. Arbogast, C. S. Foote, J. Am. Chem. Soc. 113, 8886 (1991).
    179M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, R. A. J. Janssen, Angew. Chem., Int. Ed. 42, 3371 (2003).
    180Y. S. Eo, H. W. Rhee, B. D. Chin, J. W. Yu, Synth. Met. 159, 19100 (2009).
    181B. Minnaert, M. Burgelman, EPJ Appl. Phys. 38, 111 (2007).
    182M. Brumbach, D. Placencia, N. R. Armstrong, J. Phys. Chem. C 112, 3142 (2008).
    183N. R. Armstrong, W. Wang, D. M. Alloway, D. Placencia, E. Ratcliff, M. Brumbach, Macromol. Rapod Commun. 30 717 (2009).
    184D. Veldman, S. C. J. Meskers, and R. A. J. Janssen, Adv. Func. Mater. 19, 1939 (2009).
    185T. W. Ng, M. F. Lo, Y. C. Zhou, Z. T. Liu, C. S. Lee, Ohyun Kwon, and S. T. Lee, Appl. Phys. Lett. 94, 193304 (2009).
    186C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Func. Mater. 11, 374 (2001).
    187K. Vandewal, A. Gadisa, W. D. Oosterbaan, S. Bertho, F. Banishoeib, I. V. Severen, L. Lutsen, T. J. Cleij, D. Vanderzande, and J. V. Manca, Adv. Func. Mater. 18, 2064 (2008).
    188M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
    189B. P. Rand, D. P. Burk, and S. R. Forrest, Phys. Rev. B 75, 115327 (2007).
    190M. Brumbach, D. Placencia, and N. R. Armstrong, J. Phys. Chem. C 112, 3142 (2008).
    191Z. T. Liu, M. F. Lo, H. B. Wang, T.W. Ng, V.A.L. Roy, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 95, 093307 (2009).
    192J. Luo, H.B. Wu, C. He, A.Y. Li, W. Yang, and Y. Cao, Appl. Phys. Lett. 95, 043301 (2009).
    193H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11, 605 (1999).
    194C. B. Duke, L. B. Schein, Phys. Today 33, 42 (1980).
    195K. Seki, Mol. Cryst. Liq. Cryst. 171, 255 (1989).
    196K. Seki, Optical Techniques to Characterize Polymer Systems (Ed: H. Baessler), Elsevier, Amsterdam P. 115 (1989).
    197M. L. M. Rocco, K.-H. Frank, P. Yannoulis, E.E. Koch, J. Chem. Phys. 93, 6859 (1990).
    198R. A. Strayer,W. Mackie, L. W. Swanson, Surf. Sci. 34, 225 (1973).
    199N. Lang,W. Kohn, Phys. Rev. B 1, 4555 (1970).
    200D. P. Woodruff, T.A. Delchar, Modern Techniques of Surface Science, Cambridge University Press, Cambridge 1986.
    201I. G. Hill, A. Rajagopal, A. Kahn, Y. Hu, Appl. Phys. Lett. 73, 662 (1998).
    202H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, K. Seki, IEEE J. Sel. Top. Quant. Electron. 4, 24 (1998).
    203A. Rajagopal, C. I. Wu, A. Kahn, J. Appl. Phys. 83, 2649 (1998).
    204T. R. Ohno, Y. Chen, S. E. Harvey, G. H. Kroll, J. H. Weaver, R. E. Haufler, R. E. Smalley, Phys. Rev. B 44, 13747 (1991).
    205H. J. Freund, H. Kuhlenbeck, Application of Synchrotorn Radiation (Ed: W. Eberhardt), Springer, Berlin P. 9 (1995).
    206L. J. Brillson, Surf. Sci. 299/300 909 (1994).
    207C. T. Chou, C. H. Lin, M. H. Wu, T. W. Cheng, J. H. Lee, C. H. J. Liu, Y. Tai, S. Chattopadhyay, J. K. Wang, K. H. Chen, and L. C Chen, J. Appl. Phys. 110, 083104 (2011)

    無法下載圖示 全文公開日期 2017/05/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE