簡易檢索 / 詳目顯示

研究生: 陳佳宏
Chia-Hung Chen
論文名稱: 奈米材料摻混膠態電解質之染料敏化太陽能電池暨大氣環境鈣鈦礦太陽能電池系統建立
Quasi-solid dye-sensitized solar cells integrated with nanomaterials blending gel electrolyte & the optimized process for perovskite solar cell system under atmosphere
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 周宗翰
Tzung-Han Chou
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 124
中文關鍵詞: 低分子聚合物奈米材料奈米複合膠態電解質染料敏化太陽能電池鈣鈦礦太陽能電池
外文關鍵詞: LMOGs, polymer gel electrolyte, Nanocomposite polymer gel electrolytes, perovskite solar cell
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究第一部分利用低分子聚合物C27及奈米粒子SiO2、TiO2、GO進行膠態電解質實驗,利用最適化低分子聚合物C27電解質組成,其光電轉換效率可達7.21%,與離子液態電解質的光電轉換效率7.22%相近,在藉由加入不同種類及尺寸的奈米粒子,增強氧化還原對在電解質中的擴散能力,使SiO2奈米複合膠態電解質的光電轉換效率達7.56%,TiO2奈米複合膠態電解質則達7.79%,並以電化學阻抗分析與光強度調製光電流/光電壓分析儀等電化學系統分析奈米複合膠態電解質電池元件內部電子傳遞情況。電池元件穩定性部分,膠態電解質與奈米膠態電解質在10天後,光電轉換效率仍能維持原本的90%以上,作為對照組的離子液體電解質則下降至50%以下。
    第二部分則利用二步旋轉塗佈法建立大氣下的鈣鈦礦太陽能電池系統,藉由m-TiO2、PbI2、MAI及HTM層的最適化,PCE由0.25%提升至8.88%,並以XRD及SEM進行材料分析。


    The first part of this study involves stable qusi-solid state dye synthesized solar cell (QS-DSSC). Polymer gel electrolyte was fabricated by using ionic liquids and a diamine derivative as low molecular mass organogelators (LMOGs). Furthermore, the influence of different nanoparticles such as SiO2, TiO2 and GO to polymer gel electrolyte electrolytes were investigated. In optimizing the photoelectric conversion efficiency of the DSSC with the polymer gel electrolyte is up to 7.21%, which is close to the conversion efficiency of the ionic liquid electrolyte 7.22%. Consequently, the photovoltaic performances of DSSCs based on nano-TiO2 nanocomposite polymer electrolyte gelators are much better than those only polymer gelators. Remarkably, the results of the J-V measurement show a champion of 7.79% power conversion efficiency with NCPE-T. Significantly on successive heating and light soaking stability tests the polymer gel electrolyte and nanocomposite polymer gel electrolyte maintains more than 90% of the original photoelectric conversion efficiency after 10 days, whereas the ionic liquid electrolyte drops to 50%. Intensity modulated photocurrent/photovoltage spectroscopy and electrochemical impedance spectra were conducted to study the kinetic process of electron transport and recombination behavior.
    The second part is the use of two-step spin-coating method to establish a perovskite solar cell under the atmosphere. With optimizing m-TiO2, PbI2, MAI and HTM layer thickness, the photoelectric conversion efficiency dramatically increase from 0.25% to 8.88%.

    摘要 I Abstract II 致謝 III 總目錄 IV 表目錄 VIII 圖目錄 X 第一章、緒論 1 1.1前言 1 1.2太陽能電池之發展概況 2 1.2.1矽晶型太陽能電池 3 1.2.2薄膜型太陽能電池 3 1.2.3染料敏化太陽能電池(Dye Sensitized Solar Cell, DSSC) 3 1.2.4鈣鈦礦太陽能電池(Perovskite solar cell) 3 1.3研究動機與內容 4 第二章、理論背景與文獻回顧 5 2.1染料敏化太陽能電池 5 2.1.1起源與發展 5 2.1.2工作原理 6 2.1.3元件介紹 8 2.1.4膠態電解質材料與文獻回顧 16 2.2鈣鈦礦太陽能電池(Perovskite solar cell, PSC) 40 2.2.1起源與發展 40 2.2.2電池結構與衰退機制 42 2.2.3製程介紹與文獻回顧 45 第三章、實驗步驟 50 3.1實驗儀器 50 3.2實驗藥品 51 3.3實驗整體架構及步驟 54 3.3.1 ITO導電玻璃前處理 55 3.3.2導電玻璃基板表面清潔 55 3.3.3 DSSC之二氧化鈦薄膜製備 56 3.3.4 DSSC之染料N719溶液配製 57 3.3.5 DSSC之光電極製備 57 3.3.6 DSSC之背電極製備 57 3.3.7 DSSC之I-/I3-離子液態電解質配製 57 3.3.8 DSSC之C27、C29低分子聚合物合成 57 3.3.9 DSSC之電解質用TiO2合成 58 3.3.10 DSSC之膠態電解質配製 58 3.3.11 DSSC之元件組裝 58 3.3.12 Perovskite之FTO前處理 59 3.3.13 Perovskite之compact layer(c-TiO2)製備 59 3.3.14 Perovskite之mesoporous TiO2 layer (m-TiO2)製備 59 3.3.15 Perovskite之MAI製備 60 3.3.16 Perovskite之Perovskite 敏化層製備 61 3.3.17 Perovskite之電洞傳輸層HTL製備 61 3.3.18 Perovskite之銀(Ag)金屬電極製備 62 第四章、結果與討論 63 4.1 奈米複合膠態電解質材料製備與分析 63 4.1.1 低分子聚合物-C27材料分析 63 4.1.2 電解質用奈米材料分析 64 4.2 DSSC元件分析 66 4.2.1 DSSC光電極TiO2薄膜分析 66 4.2.2低分子聚合物膠態電解質PCE最適化 67 4.2.3奈米複合膠態電解質PCE最適化 68 4.2.4 奈米複合膠態電解質離子擴散係數分析 74 4.2.4 不同尺寸之TiO2複合膠態電解質PCE分析 78 4.2.5 電化學阻抗分析(EIS) 80 4.2.6 光強度調制光電流/光電壓分析儀(Intensity Modulated Photocurrent/Photovoltage Spectroscopy, IMPS/IMVS) 84 4.2.7入射光電轉換效率(Incident photon to charge carrier efficiency, IPCE) 87 4.2.8 奈米複合膠態電解質元件穩定性 89 4.3 Perovskite solar cell元件分析 91 4.3.1 Perovskite 敏化層-PbI2體積與溫度最適化 91 4.3.2 Perovskite 敏化層-MAI停滯時間測試 93 4.3.3 Perovskite 敏化層-MAI濃度最適化 94 4.3.5 HTM layer-轉速最適化 95 4.3.4 Mesoporous TiO2-厚度最適化 96 4.3.5 Perovskite材料分析 97 第五章、結論 99 第六章、未來展望 100 參考文獻 101

    [1] U.S. Energy Information Administration / International Energy Outlook 2010.
    [2] S. Shafiee, E. Topal, Energy Policy 2008, 36, 775.
    [3] G. H.Oettinger, Energy roadmap 2050, http://www.energy.eu/ publications/ Energy-Roadmap-2050. pdf (accessed Dec 2011).
    [4] National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiencies. Review; 6 September 2015.
    [5] E. Centurioni and D. Iencinella, IEEE Electron Device Lett., 2003, 24, 177.
    [6] D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla and A. N. Tiwari, J. Appl. Phys., 2005, 97, 084908.
    [7] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402.
    [8] B. O'Regan and M. Grätzel, Nature, 1991, 353, 737.
    [9] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, J. Am. Chem. Soc., 2005, 127, 16835.
    [10] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Science, 2011, 334, 629.
    [11] D. Sengupta, P. Dasa, B. Mondal, K. Mukherjee, Renew Sustain Energy Rev, 2016, 60, 356.
    [12] S. Ferrere, A. Zaban and B. A. Gregg, J. Phys. Chem. B, 1997, 101, 4490
    [13] K. Keis, L. Vayssiers, S. E. Linfquist and A. Hagfeldt, Nanostruct. Mater., 1999, 12, 487.
    [14] M. Y. Zayat, A. O. Saed, M. S. Dessouki, Int. J. Hydrogen Energy, 1998, 23, 259.
    [15] M.Grätzel, Nature, 2001, 414, 338.
    [16] Y. Bai, I. Mora-Seró, F. D. Angelis, J. Bisquert and P. Wang, Chem. Rev., 2014, 114, 10095.
    [17] H. G. Agrell, J. Lindgren, A. Hagfeldt, J. Photochem. Photobiol. A. Chemistry, 2004, 164, 23.
    [18] S. Gunes and N. S. Sariciftci, Inorg. Chim. Acta, 2008, 361, 581.
    [19] M. K. Nazeeruddin, M. S. Zakerruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover and M. Grätzel, Inorg. Chem., 1999, 38, 6298.
    [20] J.-Y. Chang, S. C. Chang, S.-H. Tzing, C.-H. Li, ACS Appl. Mater. Interfaces, 2014, 6, 22272.
    [21] A. Kaniyoor, S. Ramaprabhu, Electrochimica Acta, 2012, 72, 199.
    [22] V. Tjoa, J. Chua, S.S. Pramana, J. Wei, S. G. Mhaisalkar and N. Mathews, ACS Appl. Mater. Interfaces, 2012, 4, 3447.
    [23] M. Grätzel, Inorg. Chem., 2005, 44 , 6841
    [24] J. Y. Chang, J. M. Lin, L. F. Su and C. F. Chang, ACS Appl. Mater. Interfaces, 2013, 5, 8740–8752
    [25] L. Li, X. Yang, J. GaO, H. Tian, J. Zhao, A. Hagfeldt and L. Sun, J. Am. Chem. Soc., 2011, 133, 8458.
    [26] J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang, Pure Appl. Chem. 2008, 80, 2241.
    [27] S. Ardo, G. Meyer, J. Chem. Soc. Rev. 2009, 38, 115.
    [28] A. Nogueira, C. Longo, M. De Paoli, Coord. Chem. Rev. 2004, 248, 1455.
    [29] Z. Yu, N. Vlachopoulos, M. Gorlov, L. Kloo, Dalton Trans. 2011, 40, 10289.
    [30] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, Chem. Rev., 2015, 115 , 2136.
    [31] C. Law, S. Pathirana, X. Li, A. Anderson, P. Barnes, A. Listorti, T. Ghaddar, B. O’Regan, Adv. Mater. 2010, 22, 4505.
    [32] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595.
    [33] Z. Yu, N. Vlachopoulos, M. Gorlov, L. Kloo, Dalton Trans. 2011, 40, 10289.
    [34] A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
    [35] A. Hauch, A. Georg, Electrochim. Acta 2001, 46, 3457.
    [36] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, Appl. Phys. Lett. 2005, 86, 3.
    [37] I. Krossing, A. Reisinger, Coord. Chem. Rev. 2006, 250, 2721.
    [38] M. Gorlov, L. Kloo, Dalton Trans. 2008, 2655.
    [39] H. Weingartner, Angew. Chem., Int. Ed. 2008, 47, 654.
    [40] D. Mecerreyes, Prog. Polym. Science, 2011, 36, 1629.
    [41] Li, F.; Jennings, J.; Wang, X.; Fan, L.; Koh, Z.; Yu, H.; Yan, L.; Wang, Q. J. Phys. Chem. C 2014, 118, 17153.
    [42] M. Toivola, F. Ahlskog, P. Lund, Sol. Energy Mater. Sol. Cells 2006, 90, 2881.
    [43] M. Wang, C. Grätzel, S. M. Zakeeruddin, M. Grätzel, Energy Environ. Science, 2012, 5, 9394.
    [44] P. Wang, S. Zakeeruddin, J. Moser, R. Baker, M. Grätzel, J. Am. Chem. Soc. 2004, 126, 7164.
    [45] M. Wang, N. Chamberland, L. Breau, J. Moser, R. Humphry- Baker, B. Marsan, S. Zakeeruddin, M. Grätzel, Nat. Chem. 2010, 2, 385.
    [46] K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382.
    [47] S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, J. Am. Chem. Soc., 2005, 127, 3456
    [48] A. Fukui, R. Komiya, R. Yamanaka, A. Islam, L. Han, Sol. Energy Mater. Sol. Cells, 2006, 90, 649.
    [49] J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang, Pure Appl. Chem., 2008, 80, 2241.
    [50] F. Nogueira, N. Alonso-Vante,; M. De Paoli, Synth. Met. 1999, 105, 23.
    [51] A. Nogueira, M. Spinace, W. Gazotti, E. Girotto, M. De Paoli, Solid State Ionics 2001, 140, 327.
    [52] G. Silva, N. Lemes, C. Fonseca, M. De Paoli, Solid State Ionics 1997, 93, 105.
    [53] A. Nogueira, M. De Paoli, I. Montanari, R. Monkhouse, J. Nelson, J. Durrant, J. Phys. Chem. B 2001, 105, 7517.
    [54] J. Kim, M. Kang, Y. Kim, J. Won, Y. Kang, Solid State Ionics. 2005, 176, 579.
    [55] H. M. Shibl, H. S. Hafez, R. I. Rifai, M. S. A. Abdel Mottaleb, J Inorg Organomet Polym, 2013, 23, 944
    [56] B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Sol. Energy Mater. Sol. Cells 2006, 90, 549.
    [57] Y. J. Ren, Z.C. Zhang, S. B. Fang, M.Z. Yang, S.M. Cai, Sol. Energy Mater. Sol. Cells, 2002, 71, 253.
    [58]Y. Shi, C. Zhan, L. Wang, B. Ma, R. Gao, Y. Zhu and Y. Qiu. Phys. Chem. Chem. Phys. 2009, 11, 4230.
    [59] F. Bella, J. R. Nair and C. Gerbaldi, RSC Adv., 2013, 3, 15993
    [60] P. Yang, Q. Tang, Electrochimica Acta, 2016, 188, 560.
    [61] J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fang, S. Yin, T. Sato, Adv. Funct. Mater. 2007, 17, 2645.
    [62] A. Stephan, Eur. Polym. J. 2006, 42, 21.
    [63] M. Wang, X. Pan, X. Fang, L. Guo, C. Zhang, Y. Huang, Z. Huo, S. Dai, Journal of Power Sources, 2011, 196, 5784
    [64] N. Mohmeyer, P. Wang, H. Schmidt, S. Zakeeruddin, M. Grätzel, J. Mater. Chem. 2004, 14, 1905.
    [65] Z. Huo, C. Zhang, X. Fang, M. Cai, J.PowerSources, 2010, 195, 4384.
    [66] Q. Yu, C. Yu, F. Guo, EnergyEnviron.Sci, 2012, 5, 6151.
    [67]L. Tao, Z. Huo, S. Dai, Y. Ding, J. Zhu, C. Zhang, B. Zhang, J. Yao, M. K. Nazeeruddin and M. Grätzel, J. Phys. Chem. C, 2014, 118, 16718
    [68] L. Wang, H. Zhang, C. Wang and T. Ma, ACS Sustainable Chem, Eng., 2013, 1 , 205.
    [69] N. Mohmeyer, D. B. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin, M. Grätzel, J. Mater. Chem. 2006, 16, 2978.
    [70] N. Mohmeyer, P. Wang, H. W. Schmidt, S. M. Zakeeruddin, M. Grätzel, J. Mater. Chem. 2004, 14, 1905.
    [71] K. Tomioka, T. Sumiyoshi, S. Narui, Y. Nagaoka,; A. Iida, Y. Miwa, T. Taga, M. Nakano, T. Handa, J. Am. Chem. Soc. 2001, 123, 11817.
    [72] T. Sumiyoshi, K. Nishimura, M. Nakano, T. Handa, Y. Miwa, K. Tomioka, J. Am. Chem. Soc. 2003, 125, 12137.
    [73] T. Asano, T. Kubo, Y. Nishikitani, J. Photochem. Photobiol. A 2004, 164, 111.
    [74] Z. Huo, S. Dai, C. Zhang, F. Kong, X. Fang, L. Guo, W. Liu, L. Hu, X. Pan and K. Wang, J. Phys. Chem. B 2008, 112, 12927.
    [75] Z. Huo, C. Zhang, X. Fang, M. Cai, S. Dai, K. Wang, J. Power Sources 2010, 195, 4384.
    [76] P. Wang, S. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel, J. Am. Chem. Soc. 2003, 125, 1166.
    [77] M. Zistler, P. Wachter, P. Wasserscheid, D. Gerhard, R. Sastrawan, H. Gores, J. Electrochim. Acta 2006, 52, 161.
    [78] N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhoふ te, H. Patterson, A.
    [79] H. -T. Chou, H. -C. Hsu, C. -H. Lien, S. -T. Chen, Microelectronics Reliability, 2015, 55, 2174.
    [80] Bisquert, J. Phys. Chem. Chem. Phys. 2003, 5, 5360.
    [81] F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, J. Bisquert, J. Phys. Chem. B 2003, 107, 758.
    [82] E. Guillen, L. M. Peter, J. A. Anta, J. Phys. Chem. C 2011, 115, 22622−22632.
    [83] Z. Huo , S. Dai, K. Wang, F. Kong, C. Zhang, X. Pan, X. Fang, Solar Energy Materials & Solar Cells 2007, 91,1959.
    [84] S. J. Lue, Y.L. Wu, Y.L Tung, C.M. Shin, Y.C. Wang, J.R. Li, Journal of Power Sources, 2015, 274, 1283.
    [85] P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel, J. Am. Chem. Soc., 2003, 125, 1166.
    [86] I. N. Yoon, H.K. Song, J. Won, Y.S. Kang, J Phys Chem C, 2014, 118, 3918
    [87] X. Zhang, H. Yang, H. Xiong, F. Li, Y. Xia, J. Power Sources 2006, 160, 1451.
    [88] W. Chi, D. Roh, S. Kim, S. Heo, J. Kim, Nanoscale 2013, 5, 5341.
    [89] H. Usui, H. Matsui, N. Tanabe, S. Yanagida, J. Photochem. Photobiol. A Chem., 2004, 164, 97.
    [90] C. Y. Neo, J. Ouyang, Carbon, 2013, 54, 48.
    [91] M. -H. Jung, M. G. Kang and M. -J. Chu, J. Mater. Chem., 2012, 22, 16477
    [92] E. Stathatos, P. Lianos, S. Zakeeruddin, P. Liska, M. Grätzel, Chem. Mater. 2003, 15, 1825.
    [93] W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Chem. Commun. 2002, 374.
    [94] W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, J. Phys. Chem. B 2003, 107, 4374.
    [95] G. Fogassy, C. Pinel and G. Gelbard, Catal. Commun., 2009, 10, 557.
    [96] M. Mahesh, J. A. Murphy and H. P. Wessel, J. Org. Chem., 2005, 70, 4118.
    [97] H.-J. Shin, K. K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I.-S. Jung, M. H. Jin, H.-K. Jeong, J. M. Kim, J.-Y. Choi and Y. H. Lee, Adv. Funct. Mater., 2009, 19, 1987.
    [98] H. Chen, Y. Wang and S. Dong, Inorg. Chem., 2007, 46, 10587
    [99] S. Yanagida, C. R. Chim., 2006, 9, 597.
    [100] S. Kambe, S. Nakade, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B, 2002, 106, 2967.
    [101] T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Science, 2003, 27, 2072.
    [102] G. Katsaros, T. Stergiopoulos, I. M. Arabatzis, K. G. Papadokostaki, P. Falaras, J. Photochem. Photobiol., A 2002, 149, 191.
    [103] A. F. Nogueira, J. R. Durrant, M.-A. De Paoli, Adv. Mater. 2001, 13, 826.
    [104] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, P. Falaras, Nano Lett. 2002, 2, 1259.
    [105] Y. Liu, J. Y. Lee, L. Hong, J. Power Sources 2004, 129, 303.
    [106] H. Bai, C. Li, X. Wang, G. Shi, J Phys Chem C. 2011, 115, 5545.
    [107] O. C. Compton, Z. An, K. W. Putz, B. Jin Hong, B. G. Hauser, L. C. Brinson and S. T. Nguyen, Carbon, 2012, 50, 3399.
    [108] Z.S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, K. Hara, J. Phys. Chem. C, 2007, 111, 7224.
    [109] X. Ren, Q. Feng, G. Zhou, C.H. Huang, Z.S. Wang, J. Phys. Chem. C, 2010, 114, 7190.
    [110] N.R. Neale, N. Kopidakis, J. van de Lagemaat, M. Grätzel, A.J. Frank, J. Phys. Chem. B, 2005, 109, 23183.
    [111] https://en.wikipedia.org/wiki/Perovskite
    [112] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am.Chem. Soc., 2009, 131, 6050.
    [113] N. G. Park, J. Phys. Chem. Lett., 2013, 4, 2423.
    [114] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grぴatzel, S. Mhaisalkar and T. C. Sum, Science, 2013, 342, 344.
    [115] Grätzel, Nat. Mater., 2014, 13, 838.
    [116] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, Nanoscale, 2011, 3, 4088.
    [117] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A.Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, Sci. Rep., 2012, 2, 591.
    [118] M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501, 395.
    [119] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovoltaics, 2015, 23, 1.
    [120] T. A. Berhe, W. -N. Su, C. -H. Chen, C. -J. Pan, J. -H. Cheng, H. -M. Chen, H. -C. Tasi, L. -Y. Chen, A. A. Dubale and B. -J. Hwang. Energy Environ. Sci. 2016, 9, 323.
    [121] G. Niu, W. Li, F. Meng, L. Wang, H. Dong and Y. Qiu, J. Mater. Chem. A, 2014, 2, 705.
    [122] S. Ito, S. Tanaka, K. Manabe and H. Nishino, J. Phys. Chem. C, 2014, 118, 16995.
    [123] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, Nanoscale, 2011, 3, 4088.
    [124] H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel and N.-G. Park, Nano Lett., 2013,13, 2412.
    [125] E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, Chem. Commun., 2002, 1464.
    [126] F. Luo, L. Wang, B. Ma and Y. Qiu, J. Photochem. Photobiol., A, 2008, 197, 375.
    [127] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee and H. J. Snaith, Nat. Commun., 2013, 4, 2885.
    [128] N. Chander, A. Khan, P. Chandrasekhar, E. Thouti, S. K. Swami, V. Dutta and V. K. Komarala, Appl. Phys. Lett., 2014, 105, 033904.
    [129] K. Schwanitz, U. Weiler, R. Hunger, T. Mayer and W. Jaegermann, J. Phys. Chem. C, 2007, 111, 849.
    [130] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater., 2014, 13, 897
    [131] J.-H. Im, H.-S. Kim and N.-G. Park, APL Mater., 2014, 2, 081510.
    [132] H. -S. Ko, J. -W. Lee and N. -G. Park, J. Mater. Chem. A, 2015,3, 8808.
    [133] S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu and G. Cui, Chem. Mater., 2014, 26, 1485.
    [134] Y. Sheng, L. Liang , Y. Xu, D. Wu, Y. Sun, Optical Materials, 2008, 30, 1310.
    [135] V. Guzmán-Velderrain, Y. O. López, J. S. Gutiérrez, A. L. Ortiz, V. H. Collins-Martínez, Green and Sustainable Chemistry, 2014, 4, 120.
    [136] J. -H. Im, I. -H. Jang, N. Pellet, M. Grätzel and N. -G. Park, Nat. Nanotechnol. 2014, 9, 927.
    [137] J. Burschka, N. Pellet, S.-. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, Nature, 2013, 499, 316.
    [138] Y. Sheng, L. Liang, Y. Xu, D. Wu, Y. Sun, Optical Materials, 2008, 30, 1310.
    [139] L.M. Peter and K.G.U. Wijayantha, Electrochem. Commun., 1999, 1, 576.
    [140] J. Krüger, R. Plass, M. Grätzel, P. J. Cameron and L. M. Peter, J. Phys. Chem. B, 2003, 107, 7536.
    [141] D. Kou, W. Liu, L. Hu, S. Dai, Electrochim. Acta, 2013, 100, 197.
    [142] L. Wang, Z. Huo, L. Tao, J. Zhu, C. Zhang, S. Chen, S. Dai, J. Photochem. Photobiol., A , 2016, 05, 027.
    [143] L.M. Peter and K.G.U. Wijayantha, Electrochim. Acta, 2000, 45, 4543.
    [144] K. Zhu, N. R. Neale, L. Miedaner and A. J. Frank, Nano Lett., 2007, 7, 69
    [145] N. Marinova, W. Tress, R. Humphry-Baker, M. I. Dar, V. Bojinov, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel, ACS Nano, 2015, 9, 4200.
    [146] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng and L. Spiccia, Angew. Chem., Int. Ed. 2014, 126, 10056.
    [147] O. Malinkiewicz, C. Roldan-Carmona, A. Soriano, E. Bandiello, L. Camacho, M. K. Nazeeruddin and H. J. Bolink, Adv. Energy Mater. 2014, 4,1400345.

    無法下載圖示 全文公開日期 2021/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE