簡易檢索 / 詳目顯示

研究生: Bizualem Wakuma Olbasa
Bizualem Wakuma Olbasa
論文名稱: 高濃度水系電解液在鋅金屬電池的電化學性能強化與反應機制研究
Study on Electrochemical Performance Enhancement and Reaction Mechanism of Concentrated Aqueous Electrolyte in Zinc Metal Battery
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 黃炳照
BING-JOE HWANG
蘇威年
WEI-NIEN SU
吳溪煌
SHE-HUANG WU
吳乃立
Nae-Lih Wu
鄧熙聖
Hsisheng Teng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 191
中文關鍵詞: 水性電解液鋅離子電池濃電解液穩定性電化學測是電解質發展鋅枝晶鈍化層
外文關鍵詞: Aqueous electrolyte, Zn ion battery, concentrated electrolyte, stability, electrochemical test, electrolyte development, zinc dendrite, passivation layer
相關次數: 點閱:321下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具備高能量密度,安全性和相容性的材料是改善下一代儲能材料之關鍵因素。鋅金屬被視為鋅電池之理想負極材料是因為具備高能量密度 (5855 mAh/cm3) 、安全性、豐富的地球蘊藏量以及低的還原電位 (相對於SHE為 -0.76 V) 。然而,鋅電池循環時所產生的枝晶生長、腐蝕、鈍化和低庫倫效率等問題限制了鋅金屬電池之實際應用。為了克服這些問題,研究人員提出了許多不同的策略,包括電解液改質,添加電解液添加劑,於陽極鋅金屬的表面上形成人工鈍化層,隔離膜設計等。因此,找到一個能有效穩定陽極鋅金屬的電解液並開發有效的操作方法是克服陽極鋅金屬實際應用的之重要因素。
    本研究的第一份工作是高濃度硫酸鋅電解液之研究,於4.2 M ZnSO4中加入0.1 M MnSO4電解液添加劑。此開發的電解液達成了穩定的鋅沉積/溶解過程中無樹突狀枝晶之產生,在Zn||Cu電池系統中充放電循環1000小時以上仍有99% 的平均庫侖效率,相較於低濃度的硫酸鋅電解液 (2 M ZnSO4 + 0.1 M MnSO4) 是充放電循環少於400小時並 ~97% 的平均庫侖效率。此次開發的電解液有這種傑出的表現是由於其獨特電解液溶液結構中的協同效應,所形成的陽離子-陰離子聚集體改善了溶劑化/去溶劑化之過程並且MnSO4 電解液添加劑之功能是因為靜電屏蔽機制。因此,電解液添加劑還能作為減少MnO2陰極於電解液中的溶解。
    本研究的第二份工作探討高濃度水系混合電解液(4 M Zn(CF3SO3)2 + 2 M LiClO4),如何穩定水系雙離子電池系統中之鋅金屬陽極。此開發的電解液系統於高電流密度下可達到鋅沉積/溶解過程中無樹突狀枝晶之產生,並有著傑出的~100%平均庫侖效率。經由更詳細的分析包括同步輻射光源之臨場TXM、 XRD和非臨場XPS證明了緻密且穩定的鈍化層生成,此鈍化層除了於鋅沉積/溶解的過程促進均勻的電流分佈,更進一步避免了新生成的鋅沉積與高濃度混合電解液直接的反應。因此,電位窗口的拓寬是來由於抑制了水的副反應發生。使用高濃度混合水系電解液在Zn||LiFePO4電池系統中達成了穩定的效能,經過285圈充放電循環後,有著99%以上的CE和90%以上的電容量保持率。相對地,在相同系統中,使用低濃度混合水系電解液 (1 M Zn(CF3SO3)2 + 2 M LiClO4) 在170圈充放電循環中的電容量保持率不到65%。 因此,利用高濃度混合水系電解液能夠實現可逆性極高的陽極鋅金屬。此開發的電解液的有益效用可以歸因於其獨特的溶劑化結構,進而形成源自於陰離子鹽的緻密、穩定鈍化層,這與在低濃度電解液中的行為不同。
    本研究的第三份工作,超高濃度混合水系電解質 (4 M Zn(CF3SO3)2 + 2 M LiClO4 + 5 M LiCF3SO3, HCHAE) 之研究,於先前第二份工作中所開發的電解液中加入了水溶性高的三氟甲磺酸鋰 (LiCF3SO3)。添加了額外的高水溶性的鋰鹽可以增強陽離子-陰離子對的聚集體,進而減少電解液中自由溶劑分子的存在而抑制了電化學反應中水的活性。此設計的電解液在Zn||Cu電池系統中可達到鋅沉積/溶解過程中無樹突狀枝晶之產生,並有著傑出的~100%平均庫侖效率。此外,在Zn||Zn對稱電池系統中,於長圈數的循環下也有著高穩定性的鋅沉積/溶解過程並且低極化電位。獨特的電解液溶劑化結構之形成表示了所開發的超高濃縮混合電解液的特色能增進陽極鋅金屬的穩定性。由於抑制了水的副反應發生,因此相較於第二份工作所開發的高濃度水系電解液有著更寬的電位窗口。此開發的超高濃度水系電解液的有益效用可以歸因於其獨特的溶劑化結構,進而形成源自於陰離子鹽的緻密、穩定鈍化層,這與在低濃度電解液中的行為不同。此開發的 HCHAE有穩定且好的效能,於Zn||LiFePO4電池系統中經過155圈充放電循環後,有著99%以上的CE和95%以上的電容量保持率。獲得高效能電容量表現可以歸因於溶劑化結構和開發的電解質。
    因此,大部分保護陽極鋅金屬的策略,本研究特別著重在電解液改質(電解液添加劑、高濃度電解液、雙離子電解液系統),以更深入地了解水系電解液,及研究可逆性金屬陽極的基本機制。高濃度混合水系電解液可大幅拓寬和穩定系統的電位勢窗,進而改善水系鋅離子電池的能量密度。


    A high energy density, safety, and compatibility of electrodes are the key parameters for the improvement of next-generation energy storage materials. A Zn metal is considered as the most promising ideal anode material in zinc metal battery owing to its high volumetric energy density (5855 mAh/cm3), safety, a highly abundant resource, and lower reduction potential (-0.76 V vs. SHE). However, various challenges such as dendrite growth, corrosion formation, passivation, and low coulombic efficiency while cycling limits the practical application of zinc metal batteries. Numerous strategies have been made by different research scholars to overcome those challenges by electrolyte formulation, introducing electrolyte additives, forming an artificial passivation layer on the surface of Zn metal anode, designing separators, using concentrated electrolytes, and the others. Hence, finding an effective electrolyte that stabilizes the Zn metal anode and developing effective operational tools are the parameters to solve the challenges raised by the practical applications of zinc metal anode technology.
    In our first work, concentrated aqueous zinc sulfate electrolyte, 4.2 M ZnSO4 in the presence of 0.1 M MnSO4 electrolyte additives have been investigated. The developed electrolyte attains stable Zn plating/stripping with dendritic-free morphology achieving more than 99% average coulombic efficiency cycling for more than 1000 h compared to diluted aqueous zinc sulfate electrolyte (2 M ZnSO4 + 0.1 M MnSO4) achieving ~97% average coulombic efficiency cycling for less than 400 h using Zn||Cu cell configuration. The outstanding performance obtained while using the developed concentrated electrolyte shows the synergistic effect of the unique solution structure of an electrolyte due to the formation of aggregated cation-anion ion-pairs that enhances the solvation/desolvation process and function of the MnSO4 electrolyte additive due to electrostatic shielding mechanism. Accordingly, the electrolyte additives are also used to decrease the dissolution of the MnO2 cathode into an electrolyte.
    The developed concentrated electrolyte achieves a stable performance using Zn||MnO2 full-cell and ~89% capacity retention at 1200 cycle number using 938 mA/g current density.
    In our second work, the role of concentrated hybrid aqueous electrolyte (4 M Zn(CF3SO3)2 + 2 M LiClO4) on stabilizing Zn metal anode for aqueous hybrid battery system was investigated. The designed electrolyte system attains dendrite-free morphology while Zn plating/stripping achieving excellent ~100% average coulombic efficiency at high current density. Scientific investigations including the synchrotron-based in-operando TXM and XRD, as well as ex-situ XPS, suggests that the dense and stable in-situ formed passivation layer facilitates homogeneous current distribution during Zn plating/stripping and further prevents direct contact of freshly deposited Zn from the electrolyte when concentrated hybrid aqueous electrolyte was used. Thus, the water-related side-reactions were suppressed, leading to the widening of the electrochemical potential window. In a hybrid Zn||LiFePO4 configuration, the cell with concentrated hybrid aqueous electrolyte delivers a stable performance achieving more than 99% CE and more than 90% capacity retention after 285 cycle number. In contrast, the cell with dilute hybrid aqueous electrolyte (1 M Zn(CF3SO3)2 + 2 M LiClO4) gave less than 65% capacity retention at 170 cycles. Hence, concentrated hybrid aqueous electrolyte allows an exceedingly reversible Zn metal anode and realizes. The developed electrolyte's beneficial effects can be ascribed to its unique solvation structure, leading to a dense and stable salt anion-derived passivation layer, which is different from the one obtained in the dilute electrolyte.
    In our third work, a highly concentrated hybrid aqueous electrolyte (4 M Zn(CF3SO3)2 + 2 M LiClO4 + 5 M LiCF3SO3, HCHAE) was investigated by adding highly water-soluble Lithium trifluoromethanesulfonate (LiCF3SO3) to the previously developed electrolyte under our second work. Further addition of highly soluble lithium salt enhances the aggregation of cation-anion ion-pairs by further decreasing the presence of free solvent molecules and suppressing water-activity while the electrochemical process.
    The designed electrolyte system attains dendrite-free morphology while Zn plating/stripping achieving excellent ~100% average CE using Zn||Cu cell configurations. Highly stable Zn plating/stripping in lower potential polarization for longer cycle number was achieved using Zn||Zn symmetric cell also. The unique solvation structure of an electrolyte formed shows unique characteristics of the developed highly concentrated hybrid electrolyte that enhances the stabilizing property of the Zn metal anode. Thus, the water-related side-reactions were suppressed, leading to the widening of the electrochemical potential window compared to the previously developed concentrated hybrid aqueous electrolyte. The developed highly concentrated hybrid aqueous electrolyte's advantageous effects can be ascribed to its unique solvation structure, leading to a dense and stable salt anion-derived passivation layer, which is different from the one obtained in the dilute electrolyte. The developed HCHAE achieves a stable high performance using Zn||LiFePO4 cell configuration, with more than 99% CE and more than 95% capacity retention after 155 cycle number. The obtained high-performance capacity can be explained due to the solvation structure and the developed electrolyte.
    Therefore, among a widespread Zn metal anode protection strategy, using electrolyte formulation for instance we have comprehensively examined the role of electrolyte additives, the effect of highly concentrated electrolytes, and the role of hybrid ion-containing electrolyte systems to achieve a profound understanding and to explain the fundamental mechanism of Zn metal anodes’ reversible reaction in aqueous solutions. The concentrated hybrid ion aqueous-based electrolyte system significantly enlarges the electrochemical stability window of the system which can improve the energy density of aqueous-based ZIBs.

    中文摘要 i Abstract iv Acknowledgment vii Table of Contents ix Index of Figures xiii Index of Tables xxii Index of Units and Abbreviations xxiii Chapter 1 Introduction 1 1.1. Backgrounds of the study 1 1.2. Rechargeable aqueous zinc-ion battery (AZIB) 3 1.3. Fundamental development of aqueous-based electrolyte for ZIBs 5 Chapter 2 Advantages and Challenges of Zinc Metal Batteries 11 2.1. Advantages of zinc metal batteries 11 2.2. Challenges of Zn metal anode 11 2.2.1. Fundamentals of Zn dendrite formation and growth in aqueous electrolyte 12 2.2.2. Shape changes 13 2.2.3. Fundamentals of Zn corrosion formation 14 2.2.4. Fundamentals of Zn surface passivation 14 2.3. Approaches to solving the challenges of Zn metal anode 15 2.3.1. Zn surface modification/protective layer coating 16 2.3.2. Structural design of Zn metal anode surface 19 2.3.3. The fundamental effect of electrolytes for modification of Zn anode for ZIBs 19 2.4. Motivation and objectives of the study 42 2.4.1. Motivation 42 2.4.2. Objectives 43 Chapter 3 Experimental Section 44 3.1. Chemicals and reagents 44 3.2. Synthesis and preparations of electrodes 45 3.2.1. Synthesis of α-MnO2 cathode materials 45 3.2.2. Preparation of electrodes and current collectors 46 3.2.3. Preparation of electrolytes 47 3.3. Electrochemical measurement and characterization technique 48 3.3.1. Electrochemical investigation 48 3.3.2. Characterization 49 Chapter 4 Highly Stable and Long-Cycling with a Dendrite-Free Zn Metal Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes 51 4.1. Introduction 51 4.2. Results and discussion 53 4.2.1. Investigating effect of electrolyte concentration on electrochemical performance 53 4.2.2. Effect of electrolyte concentration on the solution structure 58 4.2.3. Morphological investigation for Zn plating/stripping 65 4.2.4. Investigation of surface chemistry and its composition using XPS 70 4.2.5. Investigation of electrochemical performance using MnO2 cathode material 73 4.3. Summary 79 Chapter 5 Highly Reversible Zn Metal Anode Stabilized by Dense and Anion-Derived Passivation Layer Obtained from Concentrated Hybrid Aqueous Electrolyte for Zinc-Hybrid Batteries 80 5.1. Introduction 80 5.2. Results and discussion 83 5.2.1. Electrochemical performance investigation for half-cells 83 5.2.2. Morphological evaluation of Zn plated and/or stripped onto the Cu substrate 91 5.2.3. Schematic representation for solution structure and mechanistic insight 93 5.2.4. Morphological evaluation of Zn plating/stripping using in-operando TXM 95 5.2.5. Investigation of Zn||Cu cell using synchrotron-based in-operando XRD 99 5.2.6. Investigation of in-situ formed passivation layer composition using XPS 102 5.2.7. Electrochemical investigation of Zn||LFP hybrid battery system 106 5.3. Summary 116 Chapter 6 Highly Concentrated Hybrid Aqueous Electrolyte for Stabilizing Zn Metal Anode and Improving its Electrochemical Performance for Hybrid Battery 117 6.1. Introduction 117 6.2. Results and discussion 121 6.2.1. Electrochemical performance for Zn||Zn symmetric cell 121 6.2.2. Morphological evaluation of Zn plated/stripped onto/out the Cu substrate 130 6.2.3. Schematic representation for solution structure of the developed electrolyte 132 6.2.4. Investigation of surface composition using XPS 136 6.2.5. Electrochemical investigation of Zn||LFP hybrid battery system 139 6.3. Summary 141 Chapter 7 Conclusions and Future Outlooks 142 7.1. Conclusions 142 7.2. Future outlook 145 Reference 147 List of Research Papers 162 Conference/workshop presentations 164

    [1] S. Isah, Advanced materials for energy storage devices, Asian Journal of Nanosciences and Materials, 1 (2018) 90-103.
    [2] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7 (2015) 19-29.
    [3] J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: materials, mechanisms, and applications, Materials Science and Engineering: Reports, 135 (2019) 58-84.
    [4] F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H.N. Alshareef, Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries, ACS Energy Letters, 3 (2018) 2602-2609.
    [5] J.B. Goodenough, Electrochemical energy storage in a sustainable modern society, Energy and Environmental Science, 7 (2014) 14-18.
    [6] V. Verma, S. Kumar, W. Manalastas Jr, R. Satish, M. Srinivasan, Batteries: progress in rechargeable aqueous zinc‐and aluminum‐ion battery electrodes: challenges and outlook Advanced Sustainable Systems, 3 (2019) 1970004.
    [7] X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry, Chem. Rev., 120 (2020) 7795-7866.
    [8] J.L. Andrews, S. Banerjee, It’s not over until the big ion dances: potassium gets its groove on, Joule, 2 (2018) 2194-2197.
    [9] R.C. Massé, E. Uchaker, G. Cao, Beyond Li-ion: electrode materials for sodium-and magnesium-ion batteries, Science China Materials, 58 (2015) 715-766.
    [10] K.M. Hutchins, Functional materials based on molecules with hydrogen-bonding ability: applications to drug co-crystals and polymer complexes, Royal Society Open Science, 5 (2018) 180564.
    [11] G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries, ACS Energy Letters, 3 (2018) 2480-2501.
    [12] Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy and Environment, 1 (2016) 18-42.
    [13] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 104 (2004) 4303-4418.
    [14] N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous zinc-ion battery, Journal of American Chemical Society, 138 (2016) 12894-12901.
    [15] J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang, S. Liang, Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode, Chemical Communications, 54 (2018) 4457-4460.
    [16] G. Kasiri, R. Trócoli, A.B. Hashemi, F. La Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries, Electrochimica Acta, 222 (2016) 74-83.
    [17] G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3, Nano Energy, 25 (2016) 211-217.
    [18] Z. Liu, P. Bertram, F. Endres, Bio-degradable zinc-ion battery based on a prussian blue analogue cathode and a bio-ionic liquid-based electrolyte, Journal of Solid State Electrochemistry, 21 (2017) 2021-2027.
    [19] Z. Liu, G. Pulletikurthi, F. Endres, A prussian blue/zinc secondary battery with a bio-ionic liquid–water mixture as electrolyte, ACS Applied Materials and Interfaces, 8 (2016) 12158-12164.
    [20] B. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries, ChemSusChem, 9 (2016) 2948-2956.
    [21] F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers, Nature Communications, 9 (2018) 1-11.
    [22] V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro, J. Jo, S. Kim, V. Mathew, Y.-K. Sun, J. Kim, Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes, Nano Letters, 18 (2018) 2402-2410.
    [23] Y. Zhang, H. Ang, K.N. Dinh, K. Rui, H. Lin, J. Zhu, Q. Yan, Recent advances in vanadium-based cathode materials for rechargeable zinc ion batteries, Materials Chemistry Frontiers, (2020).
    [24] K.E. Sun, T.K. Hoang, T.N.L. Doan, Y. Yu, X. Zhu, Y. Tian, P. Chen, Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries, ACS Applied Materials and Interfaces, 9 (2017) 9681-9687.
    [25] P. Senguttuvan, S.D. Han, S. Kim, A.L. Lipson, S. Tepavcevic, T.T. Fister, I.D. Bloom, A.K. Burrell, C.S. Johnson, A high power rechargeable nonaqueous multivalent Zn/V2O5 battery, Advanced Energy Materials, 6 (2016) 1600826.
    [26] S.-D. Han, S. Kim, D. Li, V. Petkov, H.D. Yoo, P.J. Phillips, H. Wang, J.J. Kim, K.L. More, B. Key, Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable zinc metal battery, Chem. Mater., 29 (2017) 4874-4884.
    [27] Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo, W. Zhang, C. Wang, L. Wang, J. Zhou, S. Liang, Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode, Energy and Environmental Science, 11 (2018) 3157-3162.
    [28] N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nature Communications, 8 (2017) 1-9.
    [29] P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet‐based aqueous zinc ion battery cathode, Advanced Energy Materials, 7 (2017) 1601920.
    [30] D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey, S.Z. Qiao, An electrolytic Zn–MnO2 battery for high‐voltage and scalable energy storage, Angew. Chem. Int. Ed, 58 (2019) 7823-7828.
    [31] W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu, C. Wang, Zn/MnO2 battery chemistry with H(+) and Zn(2+) coinsertion, Journal of American Chemical Society, 139 (2017) 9775-9778.
    [32] W. Lu, C. Xie, H. Zhang, X. Li, Inhibition of zinc dendrite growth in zinc‐based batteries, ChemSusChem, 11 (2018) 3996-4006.
    [33] C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc‐ion batteries, Energy and Environmental Materials, (2020).
    [34] Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy and Environmental Science, 12 (2019) 1938-1949.
    [35] Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan, D. Wang, Z. Huang, X. Li, J. Fan, C. Zhi, Do zinc dendrites exist in neutral zinc batteries: A developed electrohealing strategy to in-situ rescue in‐service batteries, Advanced Materials, 31 (2019) 1903778.
    [36] B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries, Energy and Environmental Science, 12 (2019) 3288-3304.
    [37] R. Einerhand, W. Visscher, J. De Goeij, E. Barendrecht, Zinc electrode shape change: II. Process and mechanism, Journal of Electrochemical Society, 138 (1991) 7.
    [38] A. R. Mainar, O. Leonet, M. Bengoechea, I. Boyano, I. de Meatza, A. Kvasha, A. Guerfi, Alberto Blázquez, Alkaline aqueous electrolytes for secondary zinc–air batteries: an overview, International Journal of Energy Research, 40 (2016) 1032-1049.
    [39] G. Garcia, E. Ventosa, W. Schuhmann, Complete prevention of dendrite formation in Zn metal anodes by means of pulsed charging protocols, ACS Applied Materials and Interfaces, 9 (2017) 18691-18698.
    [40] R. Zhao, Y. Yang, G. Liu, R. Zhu, J. Huang, Z. Chen, Z. Gao, X. Chen, L. Qie, Redirected Zn electrodeposition by an anti‐corrosion elastic constraint for highly reversible Zn anodes, Advanced Functional Materials, (2020) 2001867.
    [41] X. Wu, Y. Li, C. Li, Z. He, Y. Xiang, L. Xiong, D. Chen, Y. Yu, K. Sun, Z. He, The electrochemical performance improvement of LiMn2O4/Zn based on zinc foil as the current collector and thiourea as an electrolyte additive, Journal of Power Sources, 300 (2015) 453-459.
    [42] D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui, L. Zhang, Y. Long, H. Li, Y. Tao, Z. Weng, A corrosion‐resistant and dendrite‐free zinc metal anode in aqueous systems, Small, 16 (2020) 2001736.
    [43] Y. Yin, S. Wang, Q. Zhang, Y. Song, N. Chang, Y. Pan, H. Zhang, X. Li, Dendrite‐free zinc deposition induced by tin‐modified multifunctional 3D host for stable zinc‐based flow battery, Advanced Materials, 32 (2020) 1906803.
    [44] Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu, Z. Yuan, R. Zhan, Y. Sun, Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries, Energy Storage Materials, 27 (2020) 205-211.
    [45] Y. Yu, W. Xu, X. Liu, X. Lu, Challenges and strategies for constructing highly reversible zinc anodes in aqueous zinc‐ion batteries: Recent progress and future perspectives, Advanced Sustainable Systems, (2020) 2000082.
    [46] H. Pan, J.F. Ellis, X. Li, Z. Nie, H.J. Chang, D. Reed, Electrolyte effect on the electrochemical performance of mild aqueous zinc-electrolytic manganese dioxide batteries, ACS Applied Materials and Interfaces, 11 (2019) 37524-37530.
    [47] L. Wang, K.-W. Huang, J. Chen, J. Zheng, Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes, Science Advances, 5 (2019) eaax4279.
    [48] K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei, P. He, Y. Dong, Z. Zhang, X. Wang, L. Mai, Ultrathin surface coating enables stabilized zinc metal anode, Advanced Materials Interfaces, 5 (2018) 1800848.
    [49] L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo, J. Liu, W. Liang, C. Zhi, Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long‐life zinc rechargeable aqueous batteries, Advanced Energy Materials, 8 (2018) 1801090.
    [50] Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong, X. Lu, Dendrite‐free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn‐ion batteries, Advanced Materials, 31 (2019) 1903675.
    [51] W. Li, K. Wang, M. Zhou, H. Zhan, S. Cheng, K. Jiang, Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte, ACS Applied Materials and Interfaces, 10 (2018) 22059-22066.
    [52] M. Cui, Y. Xiao, L. Kang, W. Du, Y. Gao, X. Sun, Y. Zhou, X. Li, H. Li, F. Jiang, Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries, ACS Applied Energy Materials, 2 (2019) 6490-6496.
    [53] P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn‐based batteries, Advanced Functional Materials, 30 (2020) 1908528.
    [54] C. Shen, X. Li, N. Li, K. Xie, J.-g. Wang, X. Liu, B. Wei, Graphene-boosted, high-performance aqueous Zn-ion battery, ACS Applied Materials and Interfaces, 10 (2018) 25446-25453.
    [55] S. Bai, Y. Sun, J. Yi, Y. He, Y. Qiao, H. Zhou, High-power Li-metal anode enabled by metal-organic framework modified electrolyte, Joule, 2 (2018) 2117-2132.
    [56] S. Islam, M.H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Kim, J. Jo, J.P. Baboo, D.T. Pham, D.Y. Putro, Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries, Journal of Materials Chemistry A, 5 (2017) 23299-23309.
    [57] L. Chen, Y. Ruan, G. Zhang, Q. Wei, Y. Jiang, T. Xiong, P. He, W. Yang, M. Yan, Q. An, Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction, Chem. Mater., 31 (2019) 699-706.
    [58] Z. Jia, B. Wang, Y. Wang, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries, Mater. Chem. Phys., 149-150 (2015) 601-606.
    [59] C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc‐ion battery based on porous framework zinc pyrovanadate intercalation cathode, Advanced Materials, 30 (2018) 1705580.
    [60] J. Wang, J.-G. Wang, H. Liu, C. Wei, F. Kang, Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries, Journal of Materials Chemistry A, 7 (2019) 13727-13735.
    [61] B.W. Olbasa, F.W. Fenta, S.-F. Chiu, M.-C. Tsai, C.-J. Huang, B.A. Jote, T.T. Beyene, Y.-F. Liao, C.-H. Wang, W.-N. Su, H. Dai, B.J. Hwang, High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated Eeectrolytes, ACS Applied Energy Materials, 3 (2020) 4499-4508.
    [62] H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K.T. Mueller, J. Liu, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nature Energy, 1 (2016).
    [63] D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast, L.F. Nazar, Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface, Energy and Environmental Science, 11 (2018) 881-892.
    [64] C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery, Angew. Chem. Int. Ed, 124 (2012) 957-959.
    [65] S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery, Energy Storage Materials, (2020).
    [66] F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J.A. Dura, K. Xu, C. Wang, Highly reversible zinc metal anode for aqueous batteries, Nature Materials, 17 (2018) 543-549.
    [67] C. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng, R. Xu, J.-Q. Huang, Q. Zhang, Regulating the inner helmholtz plane for stable solid electrolyte interphase on lithium metal anodes, Journal of American Chemical Society, 141 (2019) 9422-9429.
    [68] C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D.P. Leonard, I.A. Rodríguez-Pérez, J.-X. Jiang, C. Fang, A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode, Chemical Communications, 54 (2018) 14097-14099.
    [69] J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao, H. Qiu, S. Dong, X. Zhou, G. Cui, L. Chen, “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries, Nano Energy, 57 (2019) 625-634.
    [70] F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, Journal of American Chemical Society, 135 (2013) 4450-4456.
    [71] K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114 (2014) 11503-11618.
    [72] Z. Liu, T. Cui, G. Pulletikurthi, A. Lahiri, T. Carstens, M. Olschewski, F. Endres, Dendrite‐free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn‐based batteries, Angew. Chem. Int. Ed, 55 (2016) 2889-2893.
    [73] S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou, G. Fang, S. Liang, Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries, Energy Storage Materials, 34 (2021) 545-562.
    [74] K. Miyazaki, Y.S. Lee, T. Fukutsuka, T. Abe, Suppression of dendrite formation of zinc electrodes by the modification of anion-exchange ionomer, Electrochemistry, 80 (2012) 725-727.
    [75] M. Xu, D. Ivey, W. Qu, Z. Xie, Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide, Journal of Power Sources, 274 (2015) 1249-1253.
    [76] P. Leung, C. Ponce-de-León, C. Low, F. Walsh, Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery, Electrochimica Acta, 56 (2011) 6536-6546.
    [77] A. Mitha, A.Z. Yazdi, M. Ahmed, P. Chen, Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries, ChemElectroChem, 5 (2018) 2409-2418.
    [78] S.J. Banik, R. Akolkar, Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive, Electrochimica Acta, 179 (2015) 475-481.
    [79] A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries, ACS Energy Letters, 5 (2020) 3012-3020.
    [80] N. Wang, Y. Yang, X. Qiu, X. Dong, Y. Wang, Y. Xia, Stabilized rechargeable aqueous zinc batteries using ethylene glycol as water blocker, ChemSusChem, 13 (2020) 5556-5564.
    [81] Z. Li, Y. An, S. Dong, C. Chen, L. Wu, Y. Sun, X. Zhang, Progress on zinc ion hybrid supercapacitors: Insights and challenges, Energy Storage Materials, 31 (2020) 252–266.
    [82] K.S. Ngai, S. Ramesh, K. Ramesh, J.C. Juan, A review of polymer electrolytes: fundamental, approaches and applications, Ionics, 22 (2016) 1259-1279.
    [83] M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Letters, 9 (2009) 1872-1876.
    [84] S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries, Chem, 5 (2019) 753-785.
    [85] C. Ning, Z. Zhou, G. Tan, Y. Zhu, C. Mao, Electroactive polymers for tissue regeneration: developments and perspectives, Progress in Polymer Science, 81 (2018) 144-162.
    [86] L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries, Journal of Materials Chemistry A, 4 (2016) 10038-10069.
    [87] S. Liang, W. Yan, X. Wu, Y. Zhang, Y. Zhu, H. Wang, Y. Wu, Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance, Solid State Ionics, 318 (2018) 2-18.
    [88] P. Wang, W. Qu, W.L. Song, H. Chen, R. Chen, D. Fang, Electro–chemo–mechanical issues at the interfaces in solid‐state lithium metal batteries, Advanced Functional Materials, 29 (2019) 1900950.
    [89] J. Kalhoff, G.G. Eshetu, D. Bresser, S. Passerini, Safer electrolytes for lithium-ion batteries: State of the art and perspectives, ChemSusChem, 8 (2015) 2154-2175.
    [90] Y. Wang, F. Chen, Z. Liu, Z. Tang, Q. Yang, Y. Zhao, S. Du, Q. Chen, C. Zhi, A highly elastic and reversibly stretchable all-polymer supercapacitor, Angew. Chem. Int. Ed. Engl., 58 (2019) 15707-15711.
    [91] H. Cha, J. Kim, Y. Lee, J. Cho, M. Park, Issues and challenges facing flexible lithium-ion batteries for practical application, Small, 14 (2018) e1702989.
    [92] Z. Wang, M. Zhu, Z. Pei, Q. Xue, H. Li, Y. Huang, C. Zhi, Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage, Materials Science and Engineering: R: Reports, 139 (2020) 100520.
    [93] D. Lin, J. Zhao, J. Sun, H. Yao, Y. Liu, K. Yan, Y. Cui, Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix, Proc. Natl. Acad. Sci. U. S. A., 114 (2017) 4613-4618.
    [94] F. Zhao, Y. Shi, L. Pan, G. Yu, Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications, Acc. Chem. Res., 50 (2017) 1734-1743.
    [95] M. Chen, J. Chen, W. Zhou, J. Xu, C.-P. Wong, High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte, Journal of Materials Chemistry A, 7 (2019) 26524-26532.
    [96] P. Hiralal, S. Imaizumi, H.E. Unalan, H. Matsumoto, M. Minagawa, M. Rouvala, A. Tanioka, G.A. Amaratunga, Nanomaterial-enhanced all-solid flexible zinc−carbon batteries, ACS nano, 4 (2010) 2730-2734.
    [97] W. Hagan, R. Latham, R. Linford, S. Vickers, Zinc polymer electrolytes in battery systems, Solid State Ionics, 70 (1994) 666-669.
    [98] S. Karan, T.B. Sahu, M. Sahu, Y. Mahipal, R. Agrawal, Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films:[PEO: Zn(CF3SO3)2], Ionics 23 (2017) 2721-2726.
    [99] L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, J.B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”, Nano Energy, 46 (2018) 176-184.
    [100] Q. Han, X. Chi, S. Zhang, Y. Liu, B. Zhou, J. Yang, Y. Liu, Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries, Journal of Materials Chemistry A, 6 (2018) 23046-23054.
    [101] J. Wang, J. Liu, M. Hu, J. Zeng, Y. Mu, Y. Guo, J. Yu, X. Ma, Y. Qiu, Y. Huang, A flexible, electrochromic, rechargeable Zn//PPy battery with a short circuit chromatic warning function, Journal of Materials Chemistry A, 6 (2018) 11113-11118.
    [102] H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Tang, Y. Wang, Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte, ACS nano, 12 (2018) 3140-3148.
    [103] L. Ma, S. Chen, H. Li, Z. Ruan, Z. Tang, Z. Liu, Z. Wang, Y. Huang, Z. Pei, J.A. Zapien, Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co (III) rich-electrode, Energy and Environmental Science, 11 (2018) 2521-2530.
    [104] A. Mohamad, N. Mohamed, M. Yahya, R. Othman, S. Ramesh, Y. Alias, A. Arof, Ionic conductivity studies of poly (vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells, Solid State Ionics, 156 (2003) 171-177.
    [105] J.J. Xu, H. Ye, J. Huang, Novel zinc ion conducting polymer gel electrolytes based on ionic liquids, Electrochemistry Communications, 7 (2005) 1309-1317.
    [106] J.P. Tafur, J. Abad, E. Román, A.J.F. Romero, Charge storage mechanism of MnO2 cathodes in Zn/MnO2 batteries using ionic liquid-based gel polymer electrolytes, Electrochemistry Communications, 60 (2015) 190-194.
    [107] Y. Huang, W.S. Ip, Y.Y. Lau, J. Sun, J. Zeng, N.S.S. Yeung, W.S. Ng, H. Li, Z. Pei, Q. Xue, Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability, ACS nano, 11 (2017) 8953-8961.
    [108] Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu, P. Fang, M. Wu, Y. Tong, X. Lu, An ultrastable and high‐performance flexible fiber‐shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode, Advanced Materials, 29 (2017) 1702698.
    [109] M. Li, J. Meng, Q. Li, M. Huang, X. Liu, K.A. Owusu, Z. Liu, L. Mai, Finely crafted 3D electrodes for dendrite‐free and high‐performance flexible fiber‐shaped Zn–Co batteries, Advanced Functional Materials, 28 (2018) 1802016.
    [110] N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng, J. Chen, Materials chemistry for rechargeable zinc-ion batteries, Chem. Soc. Rev., (2020).
    [111] Y. Dong, S. Di, F. Zhang, X. Bian, Y. Wang, J. Xu, L. Wang, F. Cheng, N. Zhang, Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries, Journal of Materials Chemistry A, 8 (2020) 3252-3261.
    [112] P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei, J. Li, L. Zhou, Z. Li, L. Chen, L. Mai, Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life, ACS Applied Materials and Interfaces, 9 (2017) 42717-42722.
    [113] H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju, Z. Chen, Z. Hu, D. Yan, X. Zhou, G. Cui, Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation, Nature Communications, 10 (2019) 1-12.
    [114] M. Francisco, A. van den Bruinhorst, M.C. Kroon, Low‐transition‐temperature mixtures (LTTMs): A new generation of designer solvents, Angew. Chem. Int. Ed, 52 (2013) 3074-3085.
    [115] M. Yan, H. Ni, H. Pan, Rechargeable mild aqueous zinc batteries for grid storage, Advanced Energy and Sustainability Research, 1 (2020).
    [116] J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, Z. Guo, Designing dendrite‐free zinc anodes for advanced aqueous zinc batteries, Advanced Functional Materials, (2020) 2001263.
    [117] J. Huang, Z. Guo, Y. Ma, D. Bin, Y. Wang, Y. Xia, Recent progress of rechargeable batteries using mild aqueous electrolytes, Small Methods, 3 (2019) 1800272.
    [118] D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang, N.H. Tiep, H. Zhao, J. Wang, R. Wang, H. Zhang, A high‐rate and stable quasi‐solid‐state zinc‐ion battery with novel 2D layered zinc orthovanadate array, Advanced Materials, 30 (2018) 1803181.
    [119] M. González, R. Trócoli, I. Pavlovic, C. Barriga, F. La Mantia, Layered double hydroxides as a suitable substrate to improve the efficiency of Zn anode in neutral pH Zn-ion batteries, Electrochemistry Communications, 68 (2016) 1-4.
    [120] J.F. Parker, E.S. Nelson, M.D. Wattendorf, C.N. Chervin, J.W. Long, D.R. Rolison, Retaining the 3D framework of zinc sponge anodes upon deep discharge in Zn–air cells, ACS Applied Materials and Interfaces, 6 (2014) 19471-19476.
    [121] W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye, C.C. Li, Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries, Energy and Environmental Science, 13 (2020) 3330-3360.
    [122] H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Wang, Z. Liu, Z. Tang, Y. Wang, F. Kang, B. Li, C. Zhi, An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte, Energy and Environmental Science, 11 (2018) 941-951.
    [123] D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nature Energy, 1 (2016).
    [124] X. Wu, G. Meng, W. Liu, T. Li, Q. Yang, X. Sun, J. Liu, Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries, Nano Research, 11 (2017) 163-173.
    [125] J. Pan, Y.Y. Xu, H. Yang, Z. Dong, H. Liu, B.Y. Xia, Advanced architectures and relatives of air electrodes in Zn-air batteries, Advanced Science, 5 (2018) 1700691.
    [126] A.S. Poyraz, J. Laughlin, Z. Zec, Improving the cycle life of cryptomelane type manganese dioxides in aqueous rechargeable zinc ion batteries: The effect of electrolyte concentration, Electrochimica Acta, 305 (2019) 423-432.
    [127] J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery, Nature Communications, 9 (2018) 2906.
    [128] S. Zhao, B. Han, D. Zhang, Q. Huang, L. Xiao, L. Chen, D.G. Ivey, Y. Deng, W. Wei, Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries, Journal of Materials Chemistry A, 6 (2018) 5733-5739.
    [129] V. Soundharrajan, B. Sambandam, S. Kim, V. Mathew, J. Jo, S. Kim, J. Lee, S. Islam, K. Kim, Y.-K. Sun, J. Kim, Aqueous magnesium zinc hybrid battery: An advanced high-voltage and high-energy MgMn2O4 cathode, ACS Energy Letters, 3 (2018) 1998-2004.
    [130] H. Ao, Y. Zhao, J. Zhou, W. Cai, X. Zhang, Y. Zhu, Y. Qian, Rechargeable aqueous hybrid ion batteries: developments and prospects, Journal of Materials Chemistry A, 7 (2019) 18708-18734.
    [131] P. Yu, Y. Zeng, H. Zhang, M. Yu, Y. Tong, X. Lu, Flexible Zn-ion batteries: recent progresses and challenges, Small, 15 (2019) e1804760.
    [132] Z. Kang, C. Wu, L. Dong, W. Liu, J. Mou, J. Zhang, Z. Chang, B. Jiang, G. Wang, F. Kang, C. Xu, 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries, ACS Sustainable Chemistry and Engineering, 7 (2019) 3364-3371.
    [133] X. Huang, X. Chen, A. Li, D. Atinafu, H. Gao, W. Dong, G. Wang, Shape-stabilized phase change materials based on porous supports for thermal energy storage applications, Chemical Engineering Journal, 356 (2019) 641-661.
    [134] A. Naveed, H. Yang, Y. Shao, J. Yang, N. Yanna, J. Liu, S. Shi, L. Zhang, A. Ye, B. He, J. Wang, A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries, Advanced Materials, 31 (2019) e1900668.
    [135] L. Han, H. Huang, J. Li, X. Zhang, Z. Yang, M. Xu, L. Pan, A novel redox bromide-ion additive hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with boosted energy density and controllable zinc deposition, Journal of Materials Chemistry A, 8 (2020) 15042-15050.
    [136] Y. Feng, Q. Zhang, S. Liu, J. Liu, Z. Tao, J. Chen, A novel aqueous sodium–manganese battery system for energy storage, Journal of Materials Chemistry A, 7 (2019) 8122-8128.
    [137] N. Qiu, H. Chen, Z. Yang, Y. Zhu, W. Liu, Y. Wang, Porous hydrated ammonium vanadate as a novel cathode for aqueous rechargeable Zn-ion batteries, Chemical Communications, 56 (2020) 3785-3788.
    [138] X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong, F. Kang, C. Xu, High-performance aqueous zinc-ion batteries realized by MOF materials, Nano-Micro Letters, 12 (2020).
    [139] W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries, Nano-Micro Letters, 11 (2019).
    [140] W. Kaveevivitchai, A. Manthiram, High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries, Journal of Materials Chemistry A, 4 (2016) 18737-18741.
    [141] Y. Li, H. Dai, Recent advances in zinc-air batteries, Chem. Soc. Rev., 43 (2014) 5257-5275.
    [142] M. Xu, D.G. Ivey, Z. Xie, W. Qu, Electrochemical behavior of Zn/Zn(II) couples in aprotic ionic liquids based on pyrrolidinium and imidazolium cations and bis(trifluoromethanesulfonyl)imide and dicyanamide anions, Electrochimica Acta, 89 (2013) 756-762.
    [143] C. Deng, X. Xie, J. Han, Y. Tang, J. Gao, C. Liu, X. Shi, J. Zhou, S. Liang, A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode, Advanced Functional Materials, 30 (2020) 2000599.
    [144] Y. Lu, T. Zhu, N. Xu, K. Huang, A semisolid electrolyte for flexible Zn-ion batteries, ACS Applied Energy Materials, 2 (2019) 6904-6910.
    [145] S. Kaushik, K. Matsumoto, Y. Sato, R. Hagiwara, Vanadium phosphide–phosphorus composite as a high-capacity negative electrode for sodium secondary batteries using an ionic liquid electrolyte, Electrochemistry Communications, 102 (2019) 46-51.
    [146] C. Yang, J. Chen, T. Qing, X. Fan, W. Sun, A. von Cresce, M.S. Ding, O. Borodin, J. Vatamanu, M.A. Schroeder, N. Eidson, C. Wang, K. Xu, 4.0 V Aqueous Li-ion batteries, Joule, 1 (2017) 122-132.
    [147] R. Stoyanova, V. Koleva, A. Stoyanova, Lithium versus mono/polyvalent ion intercalation: Hybrid metal ion systems for energy storage, Chemical Record 19 (2019) 474-501.
    [148] J. Hao, J. Long, B. Li, X. Li, S. Zhang, F. Yang, X. Zeng, Z. Yang, W.K. Pang, Z. Guo, Toward high‐performance hybrid Zn‐based batteries via deeply understanding their mechanism and using electrolyte additive, Advanced Functional Materials, 29 (2019).
    [149] Q. Liu, H. Wang, C. Jiang, Y. Tang, Multi-ion strategies towards emerging rechargeable batteries with high performance, Energy Storage Materials, 23 (2019) 566-586.
    [150] G. Yuan, J. Bai, T.N.L. Doan, P. Chen, Synthesis and electrochemical investigation of nanosized LiMn2O4 as cathode material for rechargeable hybrid aqueous batteries, Materials Letters, 137 (2014) 311-314.
    [151] J. Yan, J. Wang, H. Liu, Z. Bakenov, D. Gosselink, P. Chen, Rechargeable hybrid aqueous batteries, Journal of Power Sources, 216 (2012) 222-226.
    [152] H. Zhang, X. Wu, T. Yang, S. Liang, X. Yang, Cooperation behavior between heterogeneous cations in hybrid batteries, Chemical Communications, 49 (2013) 9977-9979.
    [153] M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, Y. Sawada, Fractal structures of zinc metal leaves grown by electrodeposition, Phys. Rev. Lett., 53 (1984) 286.
    [154] L. Yang, Z. Wang, Y. Feng, R. Tan, Y. Zuo, R. Gao, Y. Zhao, L. Han, Z. Wang, F. Pan, Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li–electrolyte interface for solid state lithium‐ion batteries, Advanced Energy Materials, 7 (2017) 1701437.
    [155] D.W. McOwen, D.M. Seo, O. Borodin, J. Vatamanu, P.D. Boyle, W.A. Henderson, Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms, Energy and Environmental Science, 7 (2014) 416-426.
    [156] C. Zhang, A. Yamazaki, J. Murai, J.-W. Park, T. Mandai, K. Ueno, K. Dokko, M. Watanabe, Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate Ionic liquids, Part 2: Importance of solvate-structure stability for electrolytes of lithium batteries, Journal of Physical Chemistry C, 118 (2014) 17362-17373.
    [157] C.J.M. Melief, Smart delivery of vaccines, Nature Materials, 17 (2018) 482-483.
    [158] K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes, Journal American Chemical Society, 133 (2011) 13121-13129.
    [159] A.M. Tripathi, W.N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis, Chem. Soc. Rev., 47 (2018) 736-851.
    [160] M.H. Lee, S.J. Kim, D. Chang, J. Kim, S. Moon, K. Oh, K.-Y. Park, W.M. Seong, H. Park, G. Kwon, B. Lee, K. Kang, Toward a low-cost high-voltage sodium aqueous rechargeable battery, Materials Today, 29 (2019) 26-36.
    [161] Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes, Nature Energy, 4 (2019) 269-280.
    [162] N. Yesibolati, N. Umirov, A. Koishybay, M. Omarova, I. Kurmanbayeva, Y. Zhang, Y. Zhao, Z. Bakenov, High performance Zn/LiFePO4 aqueous rechargeable Battery for large scale applications, Electrochimica Acta, 152 (2015) 505-511.
    [163] Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu, J. Chen, A chemically self-charging aqueous zinc-ion battery, Nature Communications, 11 (2020) 1-10.
    [164] J. Huang, J. Zeng, K. Zhu, R. Zhang, J. Liu, High-performance aqueous zinc–manganese battery with reversible Mn2+/Mn4+ double redox achieved by carbon coated MnOx nanoparticles, Nano-Micro Letters, 12 (2020) 1-12.
    [165] J. Yang, J. Cao, Y. Peng, W. Yang, S. Barg, Z. Liu, I.A. Kinloch, M.A. Bissett, R.A. Dryfe, Unravelling the mechanism of rechargeable aqueous Zn–MnO2 batteries: Implementation of charging process by electrodeposition of MnO2, ChemSusChem, 13 (2020) 4103.
    [166] Z. Hou, M. Dong, Y. Xiong, X. Zhang, H. Ao, M. Liu, Y. Zhu, Y. Qian, A high‐energy and long‐life aqueous Zn/birnessite battery via reversible water and Zn2+ coinsertion, Small (2020) 2001228.
    [167] L. Wang, M. Jiang, F. Liu, Q. Huang, L. Liu, L. Fu, Y. Wu, Layered TiS2 as a promising host material for aqueous rechargeable Zn ion battery, Energy and Fuels, 34 (2020) 11590-11596.
    [168] H. Li, C. Xu, C. Han, Y. Chen, C. Wei, B. Li, F. Kang, Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries, Journal of Electrochemical Society, 162 (2015) A1439.
    [169] A. Krężel, W. Maret, The biological inorganic chemistry of zinc ions, Archives of Biochemistry Biophysics, 611 (2016) 3-19.
    [170] K. Wu, J. Huang, J. Yi, X. Liu, Y. Liu, Y. Wang, J. Zhang, Y. Xia, Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives, Advanced Energy Materials, 10 (2020) 1903977.
    [171] Z. Liu, A. Prowald, O. Höfft, G. Li, A. Lahiri, F. Endres, An ionic liquid‐surface functionalized polystyrene spheres hybrid electrolyte for rechargeable zinc/conductive polymer batteries, ChemElectroChem, 5 (2018) 2321-2325.
    [172] Y. Zhang, Z. Chen, H. Qiu, W. Yang, Z. Zhao, J. Zhao, G. Cui, Pursuit of reversible Zn electrochemistry: a time-honored challenge towards low-cost and green energy storage, NPG Asia Materials, 12 (2020) 1-24.
    [173] A.R. Mainar, E. Iruin, L.C. Colmenares, A. Kvasha, I. De Meatza, M. Bengoechea, O. Leonet, I. Boyano, Z. Zhang, J.A. Blazquez, An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc, Journal of Energy Storage, 15 (2018) 304-328.
    [174] L. Dong, W. Yang, W. Yang, C. Wang, Y. Li, C. Xu, S. Wan, F. He, F. Kang, G. Wang, High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage, Nano-Micro Letters, 11 (2019) 94.
    [175] X. Chen, L. Wang, H. Li, F. Cheng, J. Chen, Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries, Journal of Energy Chemistry, 38 (2019) 20-25.
    [176] F. Tang, X. Wu, R. Shi, Y. Shen, X. Wu, A potential large-scale energy conversion/storage system: an aqueous rechargeable battery with intercalated potassium compound, Ionics, 25 (2019) 2267-2274.
    [177] Y. Yao, K.T. Lee, X. Sheng, N.A. Batara, N. Hong, J. He, L. Xu, M.M. Hussain, H.A. Atwater, N.S. Lewis, Porous nanomaterials: porous nanomaterials for ultrabroadband omnidirectional anti‐reflection surfaces with applications in high concentration photovoltaics, Advanced Energy Materials, 7 (2017).
    [178] L. Liu, K. Du, Z. He, T. Wang, X. Zhong, T. Ma, J. Yang, Y. He, G. Dong, S. Wang, High-temperature adaptive and robust ultra-thin inorganic all-solid-state smart electrochromic energy storage devices, Nano Energy, 62 (2019) 46-54.
    [179] L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 350 (2015) 938-943.
    [180] E. Hu, X.-Q. Yang, Rejuvenating zinc batteries, Nature Materials, 17 (2018) 480-481.

    無法下載圖示 全文公開日期 2026/02/01 (校內網路)
    全文公開日期 2031/02/01 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE