簡易檢索 / 詳目顯示

研究生: 賴宣廷
Hsuan-Ting Lai
論文名稱: 利用FLAC/SLOPE探討地質與材料不確定性於邊坡穩定性分析之影響
Slope Stability Assessment Considering Geological and Material Uncertainties Using FLAC/SLOPE
指導教授: 李安叡
An-Jui Li
口試委員: 林宏達
HONG-DA LIN
林錫宏
SI-HONG LIN
董家鈞
JIA-JYUN DONG
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 110
中文關鍵詞: 地質與材料不確定性邊坡穩定性隨機場優化算法有限差分法
外文關鍵詞: Geological and Material Uncertainties, Slope Stability, Random field, Optimization Methods, Finite-Difference Methods
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於地質的複雜性和同一空間中材料的變異性以及可用鑽探資料的有限性,一個鑽孔樣本難以代表準確的地下空間特徵,從而導致地質與材料不確定性。工程或學術界利用數值分析軟體作為探討邊坡穩定性的工具已行之有年,然而顯少有針對地質與材料不確定性對於邊坡穩定性之影響的討論。本研究以有限差分法軟體FLAC/SLOPE建立隨機場模型探討地質與材料不確定性對於邊坡穩定性之影響,結果顯示若考量材料不確定性對邊坡安全係數約會產生5%的影響。同時可結合反算分析依據傾度管測得之位移等有限的資訊推估邊坡最為可能的地質與材料分布。或可由塑性區之發展推估漸進式破壞發生時依序的滑動區域。
    近年來邊坡穩定分析多被視為需要最佳化的課題,本研究應用水母啟發式優化演算法針對台灣地區的岩石區域參數進行反算分析評估隨機場狀態下的臨界破壞面發展。結果表明過往將整體邊坡視為均質的情況進行分析所得之破壞面會過於樂觀,低估破壞時的影響範圍。基於以上對於隨機場分析的應用,無論是安全係數或滑動面位置的結果皆或可降低相關工程、地質災害的分析與評估時的風險。因此,相較過往使用均質的確定性地質模型來進行穩定性分析,本研究改以地質與材料不確定性方法進行更全面性的探討。


    Due to the complexity of the geology and the variability of materials in the same space and the limited availability of geologic drilling data, a single borehole sample can hardly represent an accurate underground space feature, thus leading to geological and material uncertainty. Numerical analysis has been used to investigate slope stability for many years in engineering and academia, but there isn’t has many discussions on slope stability assessment considering geological and material uncertainties. In this study, a random-field model was developed using the finite-difference software FLAC/SLOPE to investigate the effect of geological and material uncertainties on slope stability, the results show that if material uncertainty is considered in slope, it will have an impact of about 5% on Factor of Safety. It can also be combined with back analysis technique to estimate the most likely geological and material distribution of the slope based on limited information such as the displacement of inclinometer. Or used the development of the plastic zone to estimate the sliding area that in sequence, when progressive failure occurs.
    In recent years, slope stability analysis has been considered as a topic requiring optimization. In this study, we applied the Jellyfish Search algorithm to evaluate the development of critical failure surface under random field conditions by back analysis which considered rock parameters in Taiwan area. The results shows that the influence area during failure will be too optimistic and underestimates, compare to homogeneous slope in previous study. Based on the application of the random field above, the results of both Factor of Safety and failure surface may reduce the risk in the analysis and evaluation of related engineering and geological hazards. Therefore, instead of using a homogeneous deterministic geological model for stability analysis, this study uses a geological and material uncertainty approach for a more comprehensive investigate.

    摘要………………… i Abstract……………… ii 致謝……………… iv 目錄………………. v 表目錄…………….. viii 圖目錄……………... ix 第一章 緒論…………………………………………………………………………………...1 1.1 研究動機與目的 1 1.2 論文架構 2 第二章 文獻回顧 5 2.1 邊坡破壞類型 5 2.1.1 邊坡破壞機制 5 2.1.2 Mohr-Coulomb 破壞準則 9 2.1.3 Hoek-Brown 破壞準則 10 2.2 地質與材料不確定性 17 2.3 數值分析方法 19 2.3.1 有限元素法 19 2.3.2 有限差分法 19 2.3.3 數值分析於邊坡穩定性考量安全係數之方法 20 2.4 反算分析(Back-Analysis) 22 2.5 邊坡穩定分析與優化算法應用 25 第三章 研究方法 27 3.1 數值分析軟體遴選 27 3.1.1 二維邊坡數值分析軟體 FLAC/SLOPE 8.1 27 3.1.2 二維數值分析軟體 PLAXIS-2D 28 3.1.3 FLAC/SLOPE 8.1與PLAXIS-2D分析模型結果比較 29 3.1.4 小結 35 3.2 研擬FLAC/SLOPE 隨機場模型模擬方法 36 3.2.1 FLAC/SLOPE 基本理論 36 3.2.2 FLAC/SLOPE 分析程序 38 3.2.3 建立FLAC/SLOPE隨機場模型 40 3.3 隨機場參數設定 43 3.3.1 剪裂帶參數 43 3.3.2 岩石參數 43 3.4 多目標水母啟發式優化演算法(Multi-Objective Jellyfish Search optimizer -MOJS) 46 第四章 案例研究與結果探討 50 4.1 台灣南投定遠地區邊坡 50 4.1.1 案例介紹 50 4.1.2 數值模型與隨機場土壤參數建立 52 4.1.3 考慮材料不確定性下的分析結果 55 4.2 台灣南投廬山溫泉北側邊坡 57 4.2.1 案例介紹 57 4.2.2 數值模型與隨機場土壤參數建立 59 4.2.3 考慮地層不確定性下的分析結果 63 4.3 土耳其Baskoyak露天礦坑崩塌案 68 4.3.1 案例介紹 68 4.3.2 數值模型 70 4.3.3 回歸目標方程式 71 4.3.4 多目標水母啟發式優化演算法應用之基準驗證 72 4.3.5 結合優化演算法建立混合模型 75 4.3.6 分析結果 77 4.4 小結 88 第五章 結論與建議 89 5.1 結論 89 5.2 建議 91 參考文獻……………. 93

    1. Baker, R. (1980). Determination of the critical slip surface in slope stability computations. International journal for numerical and analytical methods in geomechanics, 4(4), 333-359.
    2. Bonabeau, E., Theraulaz, G., Dorigo, M., Theraulaz, G., & Marco, D. d. R. D. F. (1999). Swarm intelligence: from natural to artificial systems. Oxford university press.
    3. Cala, M., & Flisiak, J. (2020). Slope stability analysis with FLAC and limit equilibrium methods. In FLAC and numerical modeling in geomechanics (pp. 111-114). CRC Press.
    4. Ching, J., Yang, Z.-Y., Shiau, J.-Q., & Chen, C.-J. (2013). Estimation of rock pressure during an excavation/cut in sedimentary rocks with inclined bedding planes. Structural Safety, 41, 11-19.
    5. Cheng, Y. M., Lansivaara, T., & Wei, W. (2007). Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and Geotechnics, 34(3), 137-150.
    6. Chou, J.-S., & Truong, D.-N. (2020). Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems. Chaos, Solitons & Fractals, 135, 109738.
    7. Chou, J.-S., & Truong, D.-N. (2021). A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Applied Mathematics and Computation, 389, 125535.
    8. Cividini, A., Jurina, L., & Gioda, G. (1981). Some aspects of ‘characterization’problems in geomechanics. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,
    9. Clayton, C. R. (2001). Managing geotechnical risk: improving productivity in UK building and construction. Thomas Telford.
    10. Dawson, E., Roth, W., & Drescher, A. (1999). Slope stability analysis by strength reduction. Geotechnique, 49(6), 835-840.
    11. Donald, I., & Giam, S. (1988). Application of the nodal displacement method to slope stability analysis. Proceedings of the 5th Australia–New Zealand conference on geomechanics, Sydney, Australia,
    12. Duncan, J. M. (1996). State of the art: limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical engineering,122(7), 577-596.
    13. Eberhardt, E., Stead, D., & Coggan, J. (2004). Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. International Journal of Rock Mechanics and Mining Sciences, 41(1), 69-87.
    14. Einstein, H., Veneziano, D., Baecher, G., & O'reilly, K. (1983). The effect of discontinuity persistence on rock slope stability. International journal of rock mechanics and mining sciences & geomechanics abstracts,
    15. Elkateb, T., Chalaturnyk, R., & Robertson, P. K. (2003). An overview of soil heterogeneity: quantification and implications on geotechnical field problems. Canadian Geotechnical Journal, 40(1), 1-15.
    16. Goh, A. T. (1999). Genetic algorithm search for critical slip surface in multiple-wedge stability analysis. Canadian Geotechnical Journal, 36(2), 382-391.
    17. GOH, A. T. (2000). Search for critical slip circle using genetic algorithms. Civil Engineering Systems, 17(3), 181-211.
    18. Gong, W., Juang, C. H., Martin II, J. R., Tang, H., Wang, Q., & Huang, H. (2018). Probabilistic analysis of tunnel longitudinal performance based upon conditional random field simulation of soil properties. Tunnelling and Underground Space Technology, 73, 1-14.
    19. Gong, W., Zhao, C., Juang, C. H., Tang, H., Wang, H., & Hu, X. (2020). Stratigraphic uncertainty modelling with random field approach. Computers and Geotechnics, 125, 103681.
    20. Hoek, E., & Brown, E. T. (2019). The Hoek–Brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 445-463.

    21. Hoek, E., Carranza-Torres, C., & Corkum, B. (2002). Hoek-Brown failure criterion-2002 edition. Proceedings of NARMS-Tac, 1(1), 267-273.
    22. Itasca Consulting Group, Inc.(2019).User’s manual. Fast Lagrangian Analysis of Continua in two-dimensional, Version8.1.0, Minneapoils.
    23. Juang, C. H., Zhang, J., Shen, M., & Hu, J. (2019). Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis. Engineering Geology, 249, 148-161.
    24. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471.
    25. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95-international conference on neural networks,
    26. Levasseur, S., Malécot, Y., Boulon, M., & Flavigny, E. (2009). Statistical inverse analysis based on genetic algorithm and principal component analysis: method and developments using synthetic data. International Journal for Numerical and Analytical Methods in Geomechanics, 33(12), 1485-1511.
    27. Li, A., Khoo, S., Lyamin, A., & Wang, Y. (2016). Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm. Automation in Construction, 65, 42-50.
    28. Li, A.-J., Fatty, A., & Yang, I.-T. (2020). Use of evolutionary computation to improve rock slope back analysis. Applied Sciences, 10(6), 2012.

    29. Li, A. J., Merifield, R. S., & Lyamin, A. V. (2008). Stability charts for rock slopes based on the Hoek–Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 45(5), 689-700.
    30. Liang, Z., Gong, B., Tang, C., Zhang, Y., & Ma, T. (2014). Displacement back analysis for a high slope of the Dagangshan hydroelectric power station based on BP neural network and particle swarm optimization. The Scientific World Journal, 2014.
    31. Liu, S., Shao, L., & Li, H. (2015). Slope stability analysis using the limit equilibrium method and two finite element methods. Computers and Geotechnics, 63, 291-298.
    32. Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization, 26(6), 369-395.
    33. Oreste, P. (2005). Back-analysis techniques for the improvement of the understanding of rock in underground constructions. Tunnelling and Underground Space Technology, 20(1), 7-21.
    34. Ou, C. Y., & Tang, Y. G. (1994). Soil parameter determination for deep excavation analysis by optimization. Journal of the Chinese Institute of Engineers, 17(5), 671-688.
    35. Prasad, D., Mukherjee, A., & Mukherjee, V. (2017). Application of chaotic krill herd algorithm for optimal power flow with direct current link placement problem. Chaos, Solitons & Fractals, 103, 90-100.
    36. Sakurai, S., & Takeuchi, K. (1983). Back analysis of measured displacements of tunnels. Rock Mechanics and Rock Engineering, 16(3), 173-180.
    37. Sengupta, A., & Upadhyay, A. (2009). Locating the critical failure surface in a slope stability analysis by genetic algorithm. Applied Soft Computing, 9(1), 387-392.
    38. Shao, K.-S., Li, A.-J., Chen, C.-N., Chung, C.-H., Lee, C.-F., & Kuo, C.-P. (2021). Investigations of a Weathered and Closely Jointed Rock Slope Failure Using Back Analyses. Sustainability, 13(23), 13452.
    39. Sonmez, H., Ulusay, R., & Gokceoglu, C. (1998). A practical procedure for the back analysis of slope failures in closely jointed rock masses. International Journal of Rock Mechanics and Mining Sciences, 35(2), 219-233.
    40. Sun, C., Chai, J., Xu, Z., Qin, Y., & Chen, X. (2016). Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique. Engineering Geology, 214, 94-106.
    41. Tang, X.-S., Li, D.-Q., Zhou, C.-B., & Phoon, K.-K. (2015). Copula-based approaches for evaluating slope reliability under incomplete probability information. Structural Safety, 52, 90-99.
    42. USGS, (2004). “Landslide Types and Processes.”
    43. Varnes, D. J. (1978). Slope movement types and processes. In Special Report 176: Landslides: Analysis and control (Eds: Schuster, R.L and Krizek, R.J), Transportation and Road research board, National Academy of Science, Washington D.C. 11-33.
    44. Zienkiewicz, O. C., Humpheson, C., & Lewis, R. (1975). Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique, 25(4), 671-689.+
    45. 張光宗、林俊良 (2013),『廬山溫泉滑動邊坡三維分析』,中華水土保持學報,第45卷,第3期,pp779-790
    46. 吳東嶽(2004).,『軟岩邊坡漸進式破壞之機制探討與數值模擬』,國立陽明交通大學土木工程學系,碩士論文。
    47. 廖逸山(2019).,『以現地取樣試體試驗結果探討材料變異性』,國立台灣科技大學營建工程學系,碩士論文。
    48. 農委會水土保持局南投分局(2008),『廬山地滑監測及後續治理規劃』。
    49. 經濟部中央地質調查所(2017),『山崩觀測技術發展應用研究(3/4):期末報告』。

    無法下載圖示 全文公開日期 2027/09/14 (校內網路)
    全文公開日期 2042/09/14 (校外網路)
    全文公開日期 2042/09/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE