簡易檢索 / 詳目顯示

研究生: 拱祥生
Hsiang-Sheng Kung
論文名稱: 不飽和紅土基質吸力行為及其在工程上之應用
THE BEHAVIOR OF MATRIC SUCTION OF UNSATURATED LATERATIC SOILS AND THERE ENGINEERING APPLICATIONS
指導教授: 林宏達
Horn-Da Lin
口試委員: 周南山
none
褚炳麟
none
歐章煜
none
陳志南
none
沈得縣
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 294
中文關鍵詞: 不飽和紅土基質吸力水分特性曲線回彈模數不飽和土壤邊坡穩定分析浸潤帶淺層滑動
外文關鍵詞: Unsaturated Lateratic Soils, Matric Suction, Soil-Water Characteristics Curve, Resilient Modulus, Unsaturated Slope Stability Analysis, Wetting Band, Shallow-Type Landslide
相關次數: 點閱:293下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統土壤力學的研究領域,通常專注在飽和土壤的行為上。飽和土壤力學2個主要缺點分別為:(1)缺乏對於不飽和土壤行為機制的了解;(2)氣候變動因素影響地下水文狀態邊界模式的評估。然而許多工程實務問題是屬於不飽和土壤的問題,本研究的目的即在應用不飽和土壤力學理論與試驗,針對不飽和紅土吸力行為及其在路基土壤與邊坡工程的應用進行深入探討,以提供日後不飽和土壤力學研究及工程維護管理工作時的參考。
    本研究先從基質吸力的觀點探討紅土的基質吸力行為,並根據紅土吸力特性探討其回彈模數的行為。考慮滲流與植生之不飽和土壤邊坡穩定分析則為在邊坡工程之應用。基質吸力研究成果顯示,夯實土壤在乾濕測的微觀組構與夯實能量為影響夯實土壤基質吸力的關鍵因素。OMC(Optimum Moisture Content)狀態之夯實土壤有較佳之工程性質,此現象也可從其吸力特性得到印證。
    路基土壤的應力狀態、含水量及基質吸力等因素將會影響其回彈模數與塑性應變。當土壤含水量達到較濕潤的近飽和狀態時,將會產生極大之回彈模數損失,營運階段必須注意路基土壤的排水情況,以避免雨水入滲造成基質吸力降低,進一步引發路基土壤的破壞。本研究已成功應用張力計進行現地邊坡基質吸力的量測,量測結果顯示接近地表之土壤在乾季時屬於水分蒸散之行為,在足夠的雨量下則呈現入滲之行為。
    根據現地邊坡監測成果,在平時由於邊坡土體中存在之基質吸力,造成土壤剪力強度提高而使邊坡處於穩定狀態,但當暴雨來臨時,降雨入滲在邊坡表面形成之浸潤帶,將會使得邊坡因基質吸力的下降,而導致邊坡於浸潤帶內發生淺層近似平面的破壞面。本研究亦成功組合有限元素滲流分析軟體Seep/w與邊坡穩定分析軟體Slope/w,進行考慮基質吸力與不飽和滲流之邊坡穩定分析,分析結果可合理模擬不飽和土壤淺層滑動之行為。


    Classical soil mechanics has focused on the behavior of saturated soils. The shortcomings associated with classical soil mechanics are the lack of consideration of the behavior of unsaturated soils and a comprehensive model for the moisture flux boundary condition imposed by climate conditions. However, many geotechnical problems involve unsaturated soils above the groundwater table. The objective of this research is to apply the principle of the unsaturated soil mechanics to study behavior of matric suction of unsaturated lateratic soils and its engineering application.
    The main goal of this research is to investigate the behavior of matric suction of unsaturated soils and the influence of matric suction on the resilient modulus. The applications on the slope engineering include the monitoring of matric suction and slope stability analysis integrating unsaturated seepage and vegetation in it. Both the micro structure of compacted soils and the compaction energy were found to be the key parameter to control the matric suction of compacted soils. Compared to the dry side or the wet side of the compacted soils, the soils compacted as OMC(Optimum Moisture Content) condition exhibit the most favorable engineering property. This phenomenon can also be verified by the matric suction characteristics.
    The experimental results demonstrated that the stress state, moisture, and the soil suction influence the resilient modulus and plastic strain. Furthermore, the high subgrade moisture or low matric suction would result in large decrease in subgrade resilient modulus, and should be carefully taken care of in the drainage system of the subgrade during the service period. If not, failure of the subgrade soils may occur due to the loss of matric suction during infiltration. The tensiometer has been tested in the field to monitor the matric suction in the slope successfully. The measured results showed that the slope is dominated by the evaporation behavior during the dry season and exhibits infiltration behavior under the storm condition.
    The characteristics of unsaturated soil slope can be summarized as follows:(1)matric suction increases the shear strength of unsaturated soils and thus increase the factory of safety of the slope stability in the dry season; (2) rain infiltration results in the forming of a wetting band and reduction of matric suction, consequently, decreases the apparent cohesion of the unsaturated soil. Then, a shallow-type of failure would take place within the wetting zone. Considering the unsaturated seepage and matric suction, this study integrated the finite element seepage program-seep/w and slope stability software-slope/w to carry out the slope stability analyses. The analytical results show representative and comprehensive simulation of the behavior of the unsaturated soil slope subjected to rainfall infiltration as summarized above.

    目 錄 目 錄 V 符 號 索 引 XI 表 目 錄 XIV 圖 目 錄 XVI 第一章 緒 論 1 1.1 研究動機及目的 1 1.2 研究內容與方法 4 第二章 文獻回顧 6 2.1 飽和及不飽和土壤之組成 6 2.2 基質吸力理論與量測 8 2.2.1 土壤吸力理論及組成 8 2.2.2 基質吸力 11 2.2.3基質吸力的量測 13 2.3土壤水份特性曲線 17 2.3.1 土壤水份特性曲線 18 2.3.2壓力板吸力試驗 20 2.3.3 土壤水份特性曲線的應用與研究 22 2.4不飽和土壤剪力強度與試驗 23 2.4.1不飽和土壤應力狀態 23 2.4.2 不飽和土壤的剪力強度定理 26 2.5 國際及台灣不飽和土壤研究趨勢 31 第三章 林口紅土水分特性曲線試驗之研究 34 3.1 土壤基本物理性質與夯實試驗 35 3.2 土壤微觀試驗結果 36 3.3 紅土水分特性曲線試驗 38 3.3.1 壓力鍋試驗 39 3.3.2 鹽溶液試驗 40 3.3.3 濾紙法試驗 40 3.4 試驗結果 42 3.4.1 壓力平板試驗結果 43 3.4.2 鹽溶液試驗結果 45 3.4.3 濾紙法試驗結果 47 3.5 原狀紅土完整土壤水分特性曲線 48 3.6 夯實紅土完整土壤水份特性曲線 52 第四章 林口夯實紅土吸力特性與工程性質 60 4.1 試驗方法 60 4.1.1 夯實試驗 61 4.1.2 CBR試驗 63 4.1.3 直接剪力試驗 65 4.1.4 無圍壓縮試驗 66 4.1.5 濾紙法試驗 71 4.2紅土夯實曲線 73 4.3夯實紅土基質吸力特性 81 4.4 夯實紅土工程性質 86 4.4.1 CBR試驗 86 4.4.2 無圍壓縮試驗 95 4.5 小結 99 第五章 基質吸力在路基土壤回彈模數之應用 100 5.1 前言 100 5.2 濾紙法回彈模數試驗 103 5.2.1 土樣基本物理性質及水份特性曲線 104 5.2.2 試體準備、浸潤及溼治 106 5.2.3 回彈模數試驗 107 5.2.4 濾紙法量測總吸力及基質吸力 110 5.3 試驗結果討論 110 5.3.1 含水量特性 110 5.3.2 回彈模數 113 5.3.3 基質吸力 118 5.4 軸平移回彈模數試驗 120 5.4.1 土樣、試體準備、浸潤及溼治 120 5.4.2 不飽和土壤三軸試驗儀 122 5.5 吸力控制回彈模數試驗結果 127 5.5.1 基質吸力與孔隙水壓反應 127 5.5.2 回彈模數 130 5.5.3 塑性應變 134 5.6 小結 137 第六章 基質吸力在邊坡工程上應用 138 6.1 現地基質吸力的量測 141 6.1.1 張力計 141 6.1.2 間接量測法 145 6.2 不飽和土壤邊坡之基值吸力與典型剖面 148 6.3 膨脹土邊坡案例 150 6.4 香港邊坡案例 157 6.5台灣基質吸力監測案例 161 6.5.1 梨山監測案例 162 6.5.2 石門水庫監測案例 167 6.5.3 北部邊坡監測案例 185 第七章 不飽和土壤邊坡穩定分析 197 7.1 前言 197 7.2 殘積土坡之雨水入滲行為 197 7.3 降雨引致邊坡坍方之機制 202 7.4 不飽和土壤邊坡之穩定性分析 203 7.5 不飽和土壤邊坡穩定簡化分析模式 209 7.6 考慮滲流之不飽和土壤邊坡穩定分析模式 218 7.6.1 不飽和土壤邊坡穩定分析模式 218 7.6.2 假設案例 221 7.6.2.1 降雨強度之影響 224 7.6.2.2 降雨型態之影響 225 7.6.2.3 坡面入滲率之影響 229 7.6.2.4 基質吸力對邊坡穩定之影響 230 7.6.2.5 坡頂張力裂縫之影響 230 7.7 小結 232 第八章 植生對邊坡生態工法穩定性影響分析 234 8.1 前言 234 8.2 邊坡穩定工法分類 236 8.3 植生對邊坡穩定之功能 239 8.4 根系補強效益評估 245 8.5 假設案例分析 249 8.6 小結 254 第九章 結論與建議 255 參考文獻 257

    1.蔡光榮(民國83年),「台灣西南部泥岩地區植生護坡之根系力學模式應用性探討」,地工技術,第48期, pp. 49-61.
    2.陳信雄(民國86年),「集水區經營學」,國立編譯館主編。
    3.吳正雄(民國79年),「植生根力與坡面穩定關係之研究」,博士論文,國立台灣大學森林學研究所。
    4.陳榮河,洪勇善(民國92年),「生態工法之安全分析」,生態工法應用於土木工程研討會。
    5.朱信安(2004), “林口台地非飽和紅土特性之研究” ,台北科技大學土木與防災技術研究所碩士論文。
    6.林建良(2005), “不飽和凝聚性路基土壤回彈模數之研究” ,台灣科技大學營建工程系碩士論文。
    7.林宏達,拱祥生(2001), “不飽和土壤力學性質試驗及其在邊坡工程之應用” ,地工技術第83期, pp.39-52。
    8.拱祥生(1999), “降雨對不飽和土壤邊坡穩定性之影響研究” ,台灣科技大學營建工程系碩士論文。
    9.拱祥生、林宏達(2003), “植生對邊坡生態工法穩定性影響分析初探” ,技師月刊第31期, 第 60~68頁。
    10.拱祥生、林宏達、吳宏偉(2003), “不飽和土壤邊坡基質吸力量測及其在邊坡穩定分析之應用” ,地工技術第96期, 第27~42頁。
    11.莊鴻榜(2002), “不飽和礫石土剪力強度之研究” ,台灣大學土木工程學研究所碩士論文。
    12.黃志忠(2003), “未飽和紅土吸、脫附段抗剪強度行為之研究” ,中興大學土木工程研究所碩士論文。
    13.黃隆茂(1992), “部分飽和夯實礫石土之抗剪強度” ,中興大學土木工程研究所碩士論文。
    14.黃進富(1996), “土壤中水/有機液體保持特性研究” ,交通大學土木工程研究所碩士論文。
    15.張志強(2005), “以三軸試驗探討台灣未飽和紅土之濕陷性行為” ,中興大學土木工程研究所碩士論文。
    16. 褚炳麟、李泰明、許傳榮及黃隆茂(1998), “土壤塑性對縮尺化級配未飽和礫石土力學性質之影響” ,土木水利工程學刊,第10卷,第4期, 第605~616頁。
    17. 劉家男(1990), “林口台地邊坡坍方之綜合研究” ,台灣大學土木工程學研究所碩士論文。
    18. 陳漢平(2003), “降雨入滲引致邊坡破壞機制之探討─以土石流源頭為對象” ,台灣大學土木工程學研究所碩士論文。
    19. 陳奕豪(2004), “侯硐地區土石流材料-在不飽和狀態下剪力強度之研究” ,台灣大學土木工程學研究所碩士論文。
    20. 張文濤(2004), “基質吸力對於邊坡穩定性之研究 - 以林口台地為例” ,台北科技大學土木與防災技術研究所碩士論文。
    21. 楊樹榮(2005), “路基土壤之不飽和吸力特性及反覆載重下之力學行為” ,中央大學土木工程研究所博士論文。
    22. 楊樹榮、拱祥生、黃偉慶、林宏達(2005), “不飽和凝聚性路基土壤回彈模數行為之研究” ,第二屆全國非飽和土學術研討會,中國,浙江省,第425~435頁。(獲本研討會優秀論文獎)
    23. 楊樹榮、拱祥生、黃偉慶、林宏達(2006), “非飽和粘性路基土回彈模量之研究” ,岩土工程學報,第28卷,第2期,第225~229 頁。
    24. 鄭誠泰(2004), “土壤塑性對未飽和重模紅土吸、脫附段抗剪強度行為之研究” ,中興大學土木工程學研究所碩士論文。
    25. 李良武(民國84年),“未飽和崩積土靜態力學行為之初步探討”,國立交通大學土木工程研究所碩士論文。
    26. 黃隆茂(民國81年),“部分飽和夯實礫石土之抗剪強度”,國立中興大學土木工程研究所碩士論文。
    27. 黃進富(民國85年),“土壤中水/有機液體保持特性研究”,國立交通大學土木工程研究所碩士論文。
    28. 褚炳麟、李泰明、許傳榮及黃隆茂(民國87年),“土壤塑性對縮尺化級配未飽和礫石土力學性質之影響”,中國土木水利工程學刊,第十卷,第四期, pp.605-616。
    29. 劉家男(民國79年),“林口台地邊坡坍方之綜合研究”,國立台灣大學土木工程學研究所碩士論文。
    30. Bishop, D. M. and Stevens M. E. (1964), “Landslides on Logged Areas in Southeast Alaska”, USDA Forest Service Research Report Paper NOR-1, 18pp.
    31. Endo, T. and Tsuruta, T. (1969),” The Effect of Tree Roots upon the shearing Strength of Soil” ,Annual Report of the Hokkaido Branch, Tokyo Forest Experiment Station, Vol. 18, pp. 168-179.
    32. Fredlund, D. G., Morgenstern, N. R., and Widger, R. A. (1978), “The Shear Strength of Unsaturated Soils”, Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321.
    33. Gray, D. H. and Ohashi H. (1983),” Mechanics of Fiber Reinforcement in Sands”, Journal of Geotechnical Engineering(ASCE)109(3), pp. 335-353.
    34. Gray, D. H. and Sotir, B.(1995),”Biotechnical Stabilization of Steepened Slopes”, Paper Present at the Transportation Research Board 746th Annual Meeting, January 1995, Washington, D. C.
    35. Gray, D. H. and Sotir, B.(1996),”Biotechnical and soil Bioengineering Slope Stabilization- A Practical Guide for Erosion Control:, John Wiley& Sons, Inc., New York.
    36. Greenway, D. R. (1987), Vegetation and Slope stability, In: Slope Stability, edited by Anderson M. F. and Richard, K. S., New York: Wiley.
    37. Lin, H. D. and Kung, J. H. S. (2000),“Rainfall-Induced Slope Failure in Taiwan”, Asian Conf. On Unsaturated Soils-from Theory to Practice, Singapore, pp.801-806.
    38. Wu, T. H., Mckinell, W. P. and Swanston, D. N. (1979),” Strength of Tree Roots and Landslides on Prince and Wales Island, Alaska. Canadian Geotechnical Journal 16(1), pp. 19-33.
    39. AASHTO, Designation: T292-91:Standard Method of Test for Resilient Modulus of Subgrade Soils and Untreated Base/Subbase Materials, American Association of State Highway and Transportation Officials, 1992.
    40. Uzan. J. Characterization of Clayey Subgrade Materials for Mechanistic Design of Flexible Pavements. In Transportation Research Record: Journal of the Transportation Research Board, No. 1629, TRB, National Research Council, Washington, D.C., 1998, pp. 188-196.
    41. Quintus, H.V., and Killingsworth, B. Analyses relating to pavement material characterizations and their effects on pavement performance. Publication FHWA-RD-97-085, FHWA, U.S. Department of Transportation, 1998.
    42. Bulut, R., Lytton, R. L., Wray, W. K. Soil suction measurements by filter paper. Expansive Clay Soils and Vegetative Influence on Shallow Foundations, 2001, pp. 243-261.
    43. Fredlund, D. G., and Morgenstern, N. R., (1978). Stress State Variables for Unsaturated Soils,Geotechnical Division, GT11, pp. 1415-1416.
    44. AASHTO, (1986). Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials.
    45. Puppala, A. J., Chomtid S., and Wattanasanticharoen, E. (2004). “Plastic deformation potentials of sandy clay from repeated load triaxial test.” Geotechnical Engineering for Transportation Projects, GeoTrans.
    46. Khoury, N. N., Musharraf, Z. M., Nevels, J. B., and Mann, J. (2003). “Effect of soil suction on resilient modulus of subgrade soil using the filter paper technique.” CD- ROM, Transportation Research Board, National Research Council, Washington, D.C.
    47. Thadkamalla, G. B., and George, K. P. (1995). “Characterization of subgrade soils at simulated field moisture.” In Transportation Research Record: Journal of the Transportation Research Board, No. 1481, TRB, National Research Council, Washington, D.C., 21-27.
    48. Quintus, H.V., and Killingsworth, B. (1998). “Analyses relating to pavement material characterizations and their effects on pavement performance.” Publication FHWA-RD-97-085, FHWA, U.S. Department of Transportation.
    49. Fredlund, D. G., and Morgenstern, N. R. (1977). “Stress state variables for unsaturated soils.” Journal of Geotechnical Engineering, ASCE, GT5, Vol.103, 447-446.
    50. Sauer, E. K., and Monismith, C. L. (1968). “Influence of soil suction on behavior of a glacial till subjected to repeated loading.” Highway Research Record, No. 215, 8-23.
    51. Fredlund, D. G., and Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons, Inc., New York.
    52. Yang, R. R., Huang, W. H., and Tai, Y. T. (2005). “Variation of resilient modulus with soil suction for compacted subgrade soils.” CD-ROM. Transportation Research Board, National Research Council, Washington, D.C.
    53. Hiff, J. W. (1956). An investigation of pore water pressure in compacted cohesive soils. Technical Memo 654, Bureau of Reclamation, Denver.
    54. AASHTO, (1992). Designation T292-91:standard method of test for resilient modulus of subgrade soils and untreated base/subbase materials. American Association of State Highway and Transportation Officials.
    55. Khalili, N., and Khabbaz, M. H. (1998). “A unique relationship for χ for the determination of the shear strength of unsaturated soils.” Geotechnique, Vol. 48, No. 2, 1-7.
    56. AASHTO, Designation: T292-91, (1992), “Standard Method of Test for Resilient Modulus of Subgrade Soils and Untreated Base/Subbase Materials”, American Association of State Highway and Transportation Officials.
    57. Bishop, A. W. (1959), “The Principle of Effective Stress”, Teknisk Ukeblad, Vol. 106, No. 39, pp. 859-863.
    58. Cho, S. E. and Lee S. R. (2002), “Evaluation of Surficial Stability for Homogeneous Slopes Considering Rainfall Characteristics”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 9, pp. 756-763.
    59. Fredlund, D. G., and Morgenstern, N. R. (1978), “Stress State Variables for Unsaturated Soils”, Geotechnical Division, GT11, pp. 1415-1416.
    60. Huang, W. H., Yang, S.R., Kung, J.H.S., and Lin, H. D. (2006), “Effect of Matric Suction on Resilient Modulus of Compacted Subgrade Soils”, CD- ROM, paper number 06-1997, Transportation Research Board, National Research Council, Washington, D.C..
    61. Kung, H. S. Johnson., Lin, H. D., Yang S.R., and Huang, Wei Hsing. (2006), “Resilient Modulus and Plastic Strain of Unsaturated Cohesive Subgrade soils”, Unsaturated Soils 2006, Vol. 1: Geotechnical Special Publication No. 147, pp. 541-552.
    62. Lim, T. T., Rahardjo, H., Chang, M. F., Fredlund, D. G. (1996), “Effect of Rainfall on Matric Suction in a Residual Soil Slope”, Canadian Geotechnical Journal, Vol. 33, pp. 618-628.
    63. Low, T. H., Faisal, H. A., Subramaniam, R. (1998), “Parametric Studies of Slope Stability in Unsaturated Residual Soil”, Thirteenth Southeast Asian Geotechnical Conference, pp. 16-20.
    64. Marinho, F. A.M., and Stuermer, M. M. (2000), “Influence of the Compaction energy on the SWCC of a Residual Soil”, Geotechnical Special Publication, No. 99, pp. 25-141.
    65. Miller, C.J., Yesiller, N., Yaldo, K. and Merayyan, S. (2002), “Impact of Soil Type and Compaction Conditions on Soil Water Characteristic”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 9, pp. 733-742.
    66. Ng, C. W. W, and Shi, Q. (1998), “A Numerical Investigation of the Stability of Unsaturated Soil Slopes Subjected to Transient Seepage”, Comp. and Geotechnics, Vol. 22, pp. 1-28.
    67. Rahardjo, H., Lim, T. T., Fredlund, D. G. (1995), “Shear-Strength Characteristics of Residual Soil”, Canadian Geotechnical Journal, Vol. 32, pp. 60-77.
    68. Rao, S.M., and Revanasiddappa K. (2000), “Role of Matric Suction in Collapse of Compacted Clay Soil”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 1, pp. 85-90.
    69. Tami, D., Rahardjo, H., Leong, E. C. (2004), “Effect of Hysteresis on Steady-State Infiltration in Unsaturated Slopes”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 9, pp. 956-967.
    70. Tinjum J. M., Benson C. H., and Blotz L. R. (1997), “Soil-water Characteristic Curves for Compacted Clays”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 11, pp. 1060-1069.
    71. Uzan. J. (1998), “Characterization of Clayey Subgrade Materials for Mechanistic Design of Flexible Pavements”, Transportation Research Record, No. 1629, pp. 188-196.
    72. Vanapalli, S. K., Fredlund, D. G. and Pufahl, D. E., and Clifton, A. W. (1996), “Model for The Prediction of Shear Strength with Respect to Soil Suction”, Canadian Geotechnical Journal, Vol. 33, pp. 379-392.
    73. Vanapalli, S. K., Fredlund , D. G. and Pufahl, D. E. (1999), “The Influence of Soil Structure and Stress History on the Soil Water Characteristic of a Compacted Till”, Geotechnique, Vol. 49, No. 2, pp.143-159.
    74. Wilson, G. W. (1997), “Surface Boundary Flux Modeling for Unsaturated Soils”, Unsaturated Soil Engineering Practice, Geotech, Spec. Pub. No. 68, ASCE, New York, pp.38-65.
    75. Yang, S. R., Huang, W.H., and Tai, Y.T. (2005), “Variation of Resilient Modulus with Soil Suction for Compacted Subgrade Soils”, Transportation Research Record, No. 1913, pp. 96-106.
    76. BIOT, M. A. (1941), “General Theory of Three-Dimensional Consolidation”,Journal of Applied Physics, Vol. 12, No. 2, pp. 155-164.
    77. BISHOP, A. W. (1959), “The Principle of Effective Stress”, Lecture delivered in Oslo, Norway, in 1955; Published in Teknisk Ukeblad, Vol. 106, No. 39, pp. 859-863.
    78. BISHOP, A. W., AND BLIGHT, G. E. (1963) “Some Aspects of Effective Stress in Saturated and Unsaturated Soils”, Geotechnique, Vol. 13, No. 3, pp. 177-197.
    79. CRONEY, D., AND COLEMAN, J. D. (1948), “Soil Thermodynamics Applied to the Movement of Moisture in Road Foundations”, Proc. 7th Int. Cong. Appl. Mech., Vol. 3, pp. 163-177.
    80. FREDLUND, D. G. (1973), “Volume Change Behavior of Unsaturated Soils”, Ph.D. Dissertation, University of Alberta, Edmonton, Alta., Canada, 490pp.
    81. FREDLUND, D. G., AND MORGENSTERN, N. R. (1977), “Stress State Variables for Unsaturated Soils”, Journal of Geotechnical Engineering, ASCE, GT5, Vol.103, pp. 447-446.
    82. FREDLUND, D. G., MORGENSTERN, N. R., AND WIDGER, R. A. (1978), “The Shear Strength of Unsaturated Soils”, Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321.
    83. FREDLUND, D. G., KRAHN, J., AND PUFAHL D. (1981), “The Relationship Between Limit Equilibrium Slope Stability Method”, Proc. 10th Int. Conf. Soil Mech. and Found. Eng., Stockholm, Sweden, Vol. 3, pp.409-416.
    84. FREDLUND, D. G., AND RAHARDJO, H. (1993), Soil Mechanics for Unsaturated Soils, John Wiley, New York.
    85. FREDLUND, D. G., AND XING, A. (1994), “Equations for the Soil-Water Characteristics Curve”, Canadian Geotechnical Journal, Vol. 31, pp. 521-532.
    86. FREDLUND, D. G., XING, A., AND HUANG, S. (1994), “Predicting the Permeability Functions for Unsaturated Soils Using the Soil-Water Characteristics Curve”, Canadian Geotechnical Journal, Vol. 31, pp. 533-546.
    87. HILF, J. W. (1956), “An Investigation of Pore-Water Pressure in Compacted Cohesive Soils”, Ph. D. Dissertation, Tech. Memo. No. 654, U. S. Dept. of the Interior, Bureau of Reclamation, Design and Construction Div., Denver, CO, 654pp.
    88. HO, D. Y. F. AND FREDLUND, D. G. (1982), “A Multi-stage Triaxial Test for Unsaturated Soils”, Journal of Geotechnical Testing, ASTM, Vol. 5, No. 1/2, pp. 18-25.
    89. KRAHN, J., AND FRENDLUND, D. G. (1972), “On Total Matric and Osmotic Suction”, J. Soil Sci., Vol.114, No.5, pp.339-348.
    90. NG, CHARLES. W. W., AND PANG, Y. W. (2000), “Influence of Stress State on Soil-Water Characteristics and Slope Stability”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 2, pp. 157-166.
    91. RAHARDJO, H., LIM, T. T., CHANG, M. F., AND FREDLUND, D. G. (1995), “Shear –Strength Characteristics of a Residual Soil”, Canadian Geotechnical Journal, Vol. 32, No. 1, pp. 60-77.
    92. VANAPALLI, S. K., FREDLUND, D. G., PUFAHL, D. E., AND CLIFTON, A.W. (1996), “Model for the Prediction of Shear Strength with respect to Soil Suction”, Canadian Geotechnical Journal, Vol. 33, pp. 379-372.
    93. VANAPALLI, S. K., FREDLUND, D. G., AND PUFAHL, D. E. (1999), “The Effect of Soil Structure and Stress History on the Soil-Water Characteristics of a Compacted Till”, Geotechnique, Vol. 49, No. 2, pp143-159.
    94. VARGAS, M., AND PICHLER, E. (1957), “Residual Soils and Rock Slides in Santos (Brazil)”, Proc. 4th Int. Conf. Soil Mech. and Found. Eng., London. Vol. 2, pp. 394-398.

    QR CODE