簡易檢索 / 詳目顯示

研究生: 陳威翰
Wei-Han Chen
論文名稱: 運用人工智慧評估受地震影響之岩石邊坡 穩定性及可靠度
Application of artificial intelligence technique to assess the rock slope stability & reliability considering the seismic conditions
指導教授: 李安叡
An-Jui Li
口試委員: 尹孝元
Hsiao-Yuan Yin
陳昭維
Chou-Wei Chen
盧之偉
Chih-Wei LU
楊亦東
I-Tung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 139
中文關鍵詞: 極限分析法極限學習機蒙地卡羅岩石邊坡穩定性岩石邊坡可靠度地震霍克布朗強度準則
外文關鍵詞: Limit analysis, Extreme Learning Machine, Monte Carlo, rock slope stability, rock slope reliability, seismic conditions, Hoek-Brown failure criteria
相關次數: 點閱:398下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去幾十年,對於基礎建設的保護往往是邊坡災害的重要議題之一,可能的原因由地震、暴雨或其他人為活動所引起之邊坡災害。而近年來此現象則在集集地震後頃向於更糟糕,而由地震引起的邊坡擾動可能是其中原因之一。此外不只是地震的影響,對於土木工程師而言,全球暖化所引起的氣候劇烈變化皆是一個重要的議題及挑戰是我們現今要去面對的。因此本研究關注在邊坡穩定的議題上,根據前人的研究,Hoek-Brown 破壞準則比較Mohr-Coulomb破壞準則可提供較好的岩石邊坡穩定性評估。此外人工智慧技術提供了重複性工作的便利性並且可以維持其精準度。而本篇研究的目地是為了快速且大範圍的預測岩石邊坡穩定性及可靠度分析,而本研究根據三種不同的理論,極限分析法、AI技術及蒙地卡羅法以分析理解岩石邊坡穩定在地震情況。


    For the past few decades, the slope disasters are often the issues for infrastructure protection. They can be caused by the earthquake, rainfall, and other human activities. Recently, the phenomenon is getting worse after Chi-Chi earthquake. The slope mass disturbance induced by earthquakes would be one of the factors. In addition to the earthquake effects, climate change as a result of global warming would be more an important problem (challenge) that civil engineers should face it from now on. Therefore, the attention of this study was paid to slope stability issue. According to the previous studies, Hoek-Brown failure criterion can provide better rock slope stability estimations than the conventional Mohr-Coulomb failure criterion. In addition, artificial intelligence (AI) technique brings the convenience for repetitive works and still maintain accuracy. The purpose of this study is to predict the rock slope stability and reliability by using three different concepts, namely as, Limit theorem, AI technique and Monte Carlo method for seismic rock slope stability problems.

    論文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 符號表 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第二章 文獻回顧 4 2.1 邊坡模擬之機制探討 4 2.1.1 Hoek-Brown 破壞準則 6 2.1.2 極限平衡法(Limit Equilibrium Method-LEM) 13 2.1.3 有限元素法(Finite Element Analysis-FEM) 16 2.1.4 極限分析法(Limit Analysis-LA) 16 2.2 極限學習機 (Extreme Learning Machine - ELM) 25 2.3 蒙地卡羅法(Monte Carlo method) 30 第三章 數值分析與驗證 31 3.1 極限分析法 32 3.1.1 分析模型及基本參數設定 32 3.1.2 數值驗證 34 3.2 極限學習機 39 3.2.1 分析模型及基本參數設定 39 3.2.2 數值驗證 43 3.3 蒙地卡羅法 45 3.3.1 參數設定 45 3.3.2 數值驗證 48 第四章 參數分析及結果探討 49 4.1 有限元素上下界法-極限分析法(Limit analysis) 49 4.1.1 參數分析及模型建立 49 4.1.2 無地震力之結果 51 4.1.3 有地震力之結果 51 4.2 極限學習機(ELM) 60 4.2.1 基於有限元素上下界法之結果 60 4.2.2 基於蒙地卡羅法之結果 67 4.3 蒙地卡羅法 71 4.4 Case study 78 第五章 結論與建議 82 5.1 結論 82 5.2 建議 83 參考文獻 84 附件 A 極限分析法之結果圖表總攬 88

    1.Drucker, D. C., Greenberg, W. & Prager, W. (1951). The safety factor of an elastic plastic body in plane strain. Trans. ASME J. Appl. Mech. 73, 371–378.
    2.Drucker, D. C., Prager, W. & Greenberg, H. J. (1952). Extended limit design theorems for continuous media. Q. J. Appl. Math. 9, No. 4, 381–389.
    3.Das BM, Sobhan K. Principles of geotechnical engineering. Cengage learning; 2013 Jul 16.
    4.Fengshan, Hao, and Wang Lei. "Application Study of FLAC in Analysis of Slope Stability." Physical and Numerical Simulation of Geotechnical Engineering 23 (2016): 17.
    5.Hoek, E., Reliability of Hoek-Brown estimates of rock mass properties and their impact on design,Int J Rock Mech Min Sci, 35 (1998), pp. 63-68
    6.Hoek, E., Carranza-Torres, C.T. and Corkum, B. (2002) Hoek-Brown Failure Criterion— 2002 Edition. Proceedings of the 5th North American Rock Mechanics Symposium, Toronto, 7-10 July 2002, 267-273.
    7.Hadjian, A., 2004. “Earthquake reliability of structures”. 13th World Conference on Earthquake Engineering
    8.Huang, Guang-Bin, Yan-Qiu Chen, and Haroon A. Babri. "Classification ability of single hidden layer feedforward neural networks." IEEE Transactions on Neural Networks 11.3 (2000): 799-801.
    9.Huang G.-B., Zhu Q.-Y., C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing, 70 (1–3) (2006), pp. 489-501
    10.Hammouri, Nezar Atalla, Abdallah I. Husein Malkawi, and Mohammad MA Yamin. "Stability analysis of slopes using the finite element method and limiting equilibrium approach." Bulletin of Engineering Geology and the Environment 67.4 (2008): 471.
    11.Hoek, Evert, and Jonathan D. Bray. Rock slope engineering. CRC Press, 2014.
    12.Leshno, Moshe, et al. "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function." Neural networks 6.6 (1993): 861-867.
    13.Li, A. J., Merifield R.S. , Lyamin A.V. ,Stability charts for rock slopes based on the Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 45 (2008), pp. 689-700
    14.Li, A. J., Lyamin A.V., Merifield R.S. , Seismic rock slope stability charts based on limit analysis methods, Comput Geotech, 36 (2009), pp. 135-148
    15.Li, A. J., Merifield R.S., Lyaminm A.V, Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion, Comput. Geotech., 38 (4) (2011), pp. 546-558
    16.Li, A.J., Cassidy M.J. , Wang Y. , Merifield R.S. , Lyamin A.V. , Parametric Monte-Carlo studies of rock slopes based on the Hoek-Brown failure criterion, Comput. Geotech., 45 (2012), pp. 11-18
    17.Li, A. J., Khoo S.Y, Lyamin A.V. , Wang Y. , . "Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm." Automation in Construction 65 (2016): 42-50.
    18.Lyamin, A. V., and S. W. Sloan. "Lower bound limit analysis using non‐linear programming." International Journal for Numerical Methods in Engineering 55.5 (2002): 573-611.
    19.Lyamin, Andrei Vadimovich, and S. W. Sloan. "Upper bound limit analysis using linear finite elements and non‐linear programming." International Journal for Numerical and Analytical Methods in Geomechanics 26.2 (2002): 181-216.
    20.Michalowski, Radoslaw L. "Limit analysis and stability charts for 3D slope failures." Journal of Geotechnical and Geoenvironmental Engineering 136.4 (2010): 583-593.
    21.Park, Jooyoung, and Irwin W. Sandberg. "Universal approximation using radial-basis-function networks." Neural computation 3.2 (1991): 246-257.
    22.Sloan, S. W. "Geotechnical stability analysis." Géotechnique63.7 (2013): 531.
    23.Shen, Jiayi, Murat Karakus, and Chaoshui Xu. "Chart-based slope stability assessment using the Generalized Hoek–Brown criterion." International Journal of Rock Mechanics and Mining Sciences 64 (2013): 210-219.
    24.Shen, Jiayi, and Murat Karakus. "Three-dimensional numerical analysis for rock slope stability using shear strength reduction method." Canadian Geotechnical Journal 51.2 (2013): 164-172.
    25.Shou K.J. , Wang C.F. ,Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan ,Eng Geol, 68 (3–4) (2003), pp. 237-250
    26.Sun, Chaowei, et al. "Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique." Engineering Geology 214 (2016): 94-106.
    27.Taylor, D.W. 1937. Stability of earth slopes. Boston Society of Civil Engineers, 24(3): 197–246
    28.Tschuchnigg, Franz, H. F. Schweiger, and Scott W. Sloan. "Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part I: Numerical studies considering non-associated plasticity." Computers and geotechnics 70 (2015): 169-177.
    29.Wang, Y. J., Chan, C. H., Lee, Y. T., Ma, K. F., Shyu, J. B. H., Rau, R-J., & Cheng, C. T. (2016). Probabilistic seismic hazard assessment for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), pp. 325-340.
    30.Wenqi Du, Effects of directionality and vertical component of ground motions on seismic slope displacements in Newmark sliding-block analysis, Engineering Geology, Volume 239,pp. 2018,13-21
    31.Yu, Yan, Ivan P. Damians, and Richard J. Bathurst. "Influence of choice of FLAC and PLAXIS interface models on reinforced soil-structure interactions." Computers and Geotechnics 65 (2015): 164-174.
    32.Xu, Jingshu, et al. "Stability charts for rock slopes subjected to water drawdown based on the modified nonlinear Hoek-Brown failure criterion." International Journal of Geomechanics 18.1 (2017): 04017133.

    QR CODE