簡易檢索 / 詳目顯示

研究生: 謝易霖
Yi-Lin Hsieh
論文名稱: 以熱壓型奈米壓印製作氮化鎵分佈回饋式雷射的光柵
Fabrication of grating for GaN-based distributed feedback lasers using hot embossing nanoimprint lithography
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 林保宏
Pao-hung Lin
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 106
中文關鍵詞: 熱壓式奈米壓印光柵分佈回饋式雷射
外文關鍵詞: hot embossing nanoimprint lithography, grating, distributed feedback lasers
相關次數: 點閱:269下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱壓式奈米壓印微影技術僅需先使用電子束微影技術製作出所需要的模具,即可以快速且重複使用製作出奈米等級的結構,如此一來,可以省去傳統技術用來製作光柵所花費的較長時間與昂貴的設備成本。
    本論文以熱壓式奈米壓印技術(Hot-embossing nanoimprint lithography)製作氮化鎵分佈回饋式雷射(Distributed feedback lasers, DFB)的光柵,光柵週期為254nm。為改善先前實驗室研究的熱壓式奈米壓印製程,重新製作一個新的模具並且在設計中加入支撐柱的結構,此結構作用為在壓印時讓壓力平均施壓在光柵上,並在支撐柱與光柵間形成排空氣的通道。再經過不斷的參數設計與測試,此實驗不僅壓印出設計寬度20μm的光柵,也壓印出設計寬度5μm的光柵,其占空比約50%,表示此熱壓式奈米壓印的成果相當成功,接著將壓印完的光柵結構,用乾式蝕刻的方式將壓印在熱塑材料上的光柵結構轉移到氮化鎵基板上,製作出氮化鎵分佈回饋式雷射的光柵。
    這次實驗成功製作出氮化鎵光柵結構,但尚未製作出分佈回饋式雷射,主要原因為未能將轉印完的光柵結構對準在元件上,若能克服此問題,將有很高的機會成功以熱壓式奈米壓印製作出氮化鎵分佈回饋式雷射。


    Hot embossing nanoimprint lithography (NIL) manufacturing only required a previously made mold by using electron beam lithography, and use the mold to imprint repeatedly and quickly to produce nano-level structure. Therefore, it can reduce waste of time and the cost compare to the fabricated grating structure of traditional lithography.
    In this study, we used hot embossing nanoimprint lithography to fabricate a grating for gallium nitride based distributed feedback lasers. The pitch of the grating is 254 nm. To improve the hot embossing nanoimprint lithography process in the previously study of our laboratory, we remake a new mold and design the support structure which is used to make the pressure average on grating in the imprint process and formed a passage that the air can be discharged outside the substrate. After we continuously design and test parameter in this experiment. This study not only imprint the grating of 20μm width we design but also imprint the grating of 5 μm width. The duty cycle is about 50%, it shows that our experiment results are outstanding by hot-embossing nanolithography. Finally, we used dry etching to transfer our grating structure imprinted on the top of gallium nitride surface to the gallium nitride substrate to make grating for distributed feedback lasers.
    This experiment successfully fabricated the grating structure of gallium nitride. Unfortunately, we did not make the distributed feedback lasers, the main reason might be we could not align the transferred pattern to substrate. If we can overcome this problem, it has highly opportunity for us to fabricate the gallium nitride based distributed feedback lasers using hot embossing nanoimprint lithography.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖片目錄 X 表格目錄 XVI 第一章 緒論 1 1.1研究背景 1 1.2 氮化鎵材料簡介 2 1.3奈米壓印介紹與文獻回顧 6 1.3.1奈米壓印微影技術介紹 6 1.3.2奈米壓印文獻回顧 8 1.4氮化鎵分佈回饋式雷射文獻回顧 10 1.5本實驗室奈米壓印光柵結構面臨的挑戰 12 第二章 奈米壓印原理與分佈回饋式雷射原理 14 2.1奈米壓印原理[34] 14 2.1.1熱壓型奈米壓印 14 2.1.2紫外光硬化型奈米壓印 16 2.1.3微軟影壓印 17 2.1.4雷射成型式直接壓印 18 2.2半導體雷射基本操作原理[35] 20 2.3分佈回饋式雷射原理[35] 22 2.3.1微擾理論 24 2.3.2 耦合模態理論 26 2.3.3 分佈回饋式雷射之特性 26 第三章 奈米壓印製程與結果 34 3.1 模具製程與奈米壓印製程 34 3.1.1光柵模具製作 34 3.1.2 矽模具壓印前的前置作業: 43 3.1.3 Si模具脫模劑蒸鍍 44 3.1.4奈米壓印製程 45 3.1.5奈米壓印製程儀器介紹 52 3.2奈米壓印實驗結果與討論 53 3.2.1熱塑料mr-I 7010R壓印在GaN表面 55 3.2.2 熱塑料mr-I 7010R壓印在二氧化矽薄層 65 3.2.3奈米壓印製程晶圓表面平整度探討 70 第四章 元件製程與儀器介紹 72 4.1氮化鎵分佈回饋式雷射元件製程 72 4.2製程儀器介紹 76 4.2.1感應耦合電漿式離子蝕刻機(ICP-RIE) 76 4.2.2電子束蒸鍍機(E-beam evaporator) 78 4.2.3射頻濺鍍機(RF sputter) 79 4.2.4電漿輔助化學氣相沉積系統(Plasma-Enhanced Chemical Vapor Deposition, PECVD)[39] 81 4.3量測儀器介紹 82 4.3.1光激發螢光(Photoluminescence, PL)量測系統 82 4.3.2 I-V 與 L-I 量測系統 83 4.3.3場發射式掃描電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 85 4.3.4原子力顯微鏡(Atomic Force Microscopy, AFM)[41] 89 4.4 元件V-I與L-I 量測結果 92 第五章 結論與未來展望 97 5.1結論 97 5.2未來展望 101 參考文獻 102

    [1] G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, and V. Y. Davydov, “Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy,” Applied Physics Letters, vol. 84, pp. 452, 2004.
    [2] E. Fred. Schubert, “Light emitting diode,” Cambridge University Press, New York, 2006.
    [3] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI),” Japanese Journal of Applied Physics, vol. 28, pp. L2112-L2114, 1989.
    [4] I. Akasaki, H.Amano, K. Koide, and K. Manabe, “GaN based UV/blue light-emitting devices,” Inst. Phys. Conf. Ser., vol.129, pp.851-856, 1992.
    [5] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, pp. L139-L142, 1992.
    [6] S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Japanese Journal of Applied Physics, vol. 62, pp.2390-2392, 1993.
    [7] I. Akasaki, H. Amano, S. Sota, H. Sakai, T. Tanaka and M. Koike, “Stimulated Emission by Current Injection from an AlGaN/GaN/GaInN Quantum Well Device,” Japanese Journal of Applied Physics, 34 L1517, 1995.
    [8] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Japanese Journal of Applied Physics, 35 L74, 1996.
    [9] S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime,” Appl. Phys. Lett, vol. 69, pp. 4056, 1996.
    [10] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett, 72, 211, 1998.
    [11] Austin M. D., Haixiong G., W. Wu, M. Li, Zhaoning Yu; D. Wasserman; S. A. Lyon; Stepnen Y. Chau, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography” , Applied Physics Letters, Vol. 84, No. 26, pp. 5299-5301, 2004.
    [12] 鄭瑞庭、蔡宏營、林熙翔、蘇建彰、陳建洋, “簡介下世代微影技術與奈米轉印微影技術”, 機械工業雜誌, Vol.245, pp. 106-116, (2003).
    [13] 何侑倫, “奈米轉印技術現況與未來”, 微系統暨奈米科技協會會刊, Vol. 12, pp. 29-38, (2004).
    [14] 陳釧鋒, “奈米轉印製程與設備發展現況介紹”, 機械工業雜誌, Vol. 255, pp. 151-162, (2004).
    [15] C. Perret, C. Gourgon, F. Lazzarino, J. Tallal, S. Landis, R. Pelzer, “Characterization of 8-in. wafers printed by nanoimprint lithography,” Microelectronic Engineering, 73–74, 172–177, 2004.
    [16] Li, L. Chen, W. Zhang, S. Y. Chou, “Pattern transfer fidelity of nanoimprint lithography on six-inch wafers,” Nanotechnology, 14, 33, 2003.
    [17] “10 Emerging Technologies That Will Change the World,” MIT Technology Review, February. 2003.
    [18] S. Y. Chou, P. R. Krauss1 and P. J. Renstrom1, “Imprint of sub‐25 nm vias and trenches in polymers,” Appl. Phys. Lett, 67, 3114, 1995.
    [19] S. Y. Chou, P. R. Krauss1 and P. J. Renstrom1, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129, 1996.
    [20] S. Y. Chou, P. R. Krauss1 and P. J. Renstrom1, “Imprint Lithography with 25-Nanometer Resolution,” Science, New Series, Volume272, Issue 5258, 85-87, April 5 1996.
    [21] S. Y. Chou, P. R. Krauss1 and P. J. Renstrom1, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15, 2897, 1997.
    [22] Tan H. ; A. Gilbertson; S. Y. Chou, (1998), “Roller nanoimprint lithography,” Journal of Vacuum Science and Technology, B. , Vol. 16, No. 6, pp. 3926-3928.
    [23] J. Haisma, M. Verheijen, K. V. D. Heuvel, J. V. D. Berg, “Mold-assisted nanolithography: A process for reliable pattern replication,” Journal of Vacuum Science and Technology B, 14, 412-4128, 1996.
    [24] M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, M. Wedlake, T. B. Michaelson, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, “Step-and-flash imprint lithography: A new approach to high resolution patterning,” Proc. Of SPIE, 379-389, 3676, 1999.
    [25] A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching,” Applied Physics Letters, 2002-2004, 63, 1996.
    [26] S. Y. Chou, C. Keimel, J. Gu, "Ultrafast and direct imprint of nano-structures in silicon," Nature, 835-837, 417, 2002.
    [27] R. Hofmann, V. Wagner, H.-P. Gauggel, F. Adler, P. Ernst, H. Bolay, A. Sohmer, F. Scholz, and H. C. Schweizer, “Realization and Characterization of Optically Pumped GaInN–GaN DFB Lasers,” IEEE Journal of Selected Topics in Quantum Electponics, vol.3, No.2, April 1997.
    [28] R. Hofmann , V. Wagner, M. Neuner, J. Off, F. Scholz, H. Schweizer, “Optically pumped GaInN:GaN-DFB lasers: overgrown lasers and vertical modes,” Materials Science and Engineering, B59, 386–389, 1999.
    [29] D. Hofstetter, R.L. Thornton, L.T. Romano, D.P. Bour, M. Kneissl, R.M. Donaldson and C. Dunnrowicz, “Characterization of InGaN/GaN-based multi-quantum well distributed feedback lasers,” Materials Research Society, Volume 537, 1999.
    [30] R. Werner, M. Reinhardt, M. Emmerling, A. Forchel, V. Härle, A. Bazhenov, “High-resolution patterning and characterization of optically pumped first-order GaN DFB lasers,” Physica E: Low-dimensional Systems and Nanostructures, Volume 7, Issues 3–4, Pages 915–918, May 2000.
    [31] S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama and T. Mukai, “First-Order AlInGaN 405 nm Distributed Feedback Laser Diodes by Current Injection,” Japanese Journal of Applied Physics, 45 L749, 2006.
    [32] S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama and T. Mukai, “CW operation of the first-order AlInGaN 405 nm distributed feedback laser diodes,” Japanese Journal of Applied Physics, 45 L1223, 2006.
    [33] S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama and T. Mukai, “Characterization of AlInGaN-based 405nm distributed feedback laser diodes,” SPIE 6909, Novel In-Plane Semiconductor Lasers VII, 69090G, January 29, 2008.
    [34] 王婉瑄, “以奈米壓印微影技術研製氮化鎵分佈回饋式雷射”, 國立台灣科技大學電子工程所碩士論文, 台北, 2015
    [35] 盧廷昌、王興宗,半導體雷射技術,五南圖書,台北,2010。
    [36] M. Beck, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectronic Engineering 61–62, 441–448 (2002)
    [37] 甯榮椿,「使用感應耦合店將反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系碩士學位論文,新竹,2010。
    [38] T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Physical Review B, vol. 55, pp. 9571-9576, 1997.
    [39] 原著 James D. Plummer, Michael D. Deal, Peter B. Griffin,譯者 羅正忠、李嘉平、鄭湘原,半導體工程-先進製程與模擬,台灣培生教育、普林斯頓,台北,2011。
    [40] 林智仁, 場發式掃描式電子顯微鏡簡介, 工業材料雜誌, 181 期
    [41] G. Binning ,C. F. Quate, and Ch. Gerber, “Atomic Force Microscopy,” Physical review letters, vol. 56, 1986
    [42] Atomic force microscopy specification. Available: http://web.phys.ntu.edu.tw/cleanRoom/
    [43] Atomic force microscopy probe. Available: http://www.nanoworld.com/pointprobe-high-aspect-ratio-afm-tip-ar5-nclr

    QR CODE