簡易檢索 / 詳目顯示

研究生: 相偉龍
OLIVER - SEUNG
論文名稱: 長波段光纖雷射之研製
An investigation of L-band Fiber Laser
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 王立康
L.W.WANG
董正成
Jeng-Cherng Dung
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 90
中文關鍵詞: 光纖光柵光纖雷射長波段分波多工寬頻反射鏡
外文關鍵詞: fiber bragg grating, fiber laser, L-band, WDM, broad band mirror
相關次數: 點閱:197下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文共分為三個部份:首先介紹光纖光柵之原理,製造及量測,感光光纖之選擇,最後包裝及溫度補償。接著是雷射和摻鉺光纖放大的原理,摻鉺光纖雷射理論的分析,最後實驗做出可調波長從1572nm-1602nm的光纖光柵,可覆蓋長波段。第二部份進入到L band線性光纖雷射的架構,從前後向光纖雷射的架構,使用100mW的泵激光源,波長1572 nm可以得到雷射輸出功率為7.28 mW,旁模抑制(SMSR)比為56 dB,轉換效率為7 %,從光頻譜分析儀測得3 dB線寬為0.05 nm。波長1581 nm可以得到雷射輸出功率為9.51 mW,旁模抑制(SMSR)比為59.8 dB,轉換效率為10 %,線寬為0.05 nm。第三部份介紹改善耦合光纖雷射架構,使用100mW的泵激光源,波長1596 nm可以得到雷射輸出功率分別為12.13mW,旁模抑制比為60.4 dB,轉換效率為14.1 %,3dB線寬均為0.05 nm。可以得知光纖雷射架構性能的優良性。未來將可結合以上光纖雷射架構作為光纖感測器, 高密度分波多工之光源,提高解調機制的正確性。


    This thesis aims to study the characteristic of L-band (1560-1610nm). Firstly we reviewed the theory of fiber bragg grating, fabrication, and demonstrated a tunable fiber laser of range from 1572nm to 1602nm that covers the entire L-band. Then the laser and EDF principals are reviewed as well. Secondly, various pumping power and three kinds of EDF lengths of three FBG wavelengths are experimented with in four laser cavity configurations. A fiber laser at 1572 nm with 7.28 mW output power is shown. It has an optical line width of 0.05nm, side mode suppression ratio (SMSR) of 56dB and power transfer efficiency of 7%. Another fiber laser with 9.51mW output power is shown with optical line width of 0.05 nm, SMSR of 59.8 at wavelength 1582nm and power transfer efficiency of 10%. Finally with the improvement of the coupling efficiency, the lasing output power becomes 12.13mW, SMSR is 60.4 dB, power transfer efficiency is 14.1%, and 3 dB bandwidth is 0.05nm at 1596nm. These results make this L-band fiber laser a good candidate for a wide variety of sensors and communication applications.

    Table of Contents English Abstract…………………………………………I Chinese Abstract…………………………………………II Acknowledgements…………………………………………III Contents…………………………………………IV List of Figures…………………………………………V List of Tables…………………………………………VIII List of Acronyms……………………………………………………IX Chapter 1 Overview 1-1 Introduction…………………………………………1 1-2 Motivation…………………………………………4 1-3 Organization of thesis…………………………………………5 Chapter 2 Fiber Bragg Grating 2-1 Basics…………………………………………7 2-2 Theory…………………………………………8 2-3 FBG Fabrication……………………………………………………13 2-4 Photo sensitive mechanism………………………………………15 2-5 Type of photo sensitive fiber……………………………………15 2-6 Measurement………………………………………………………17 2-7 Anneal …………………… ……………………………………19 2-8 Tunable FBG …………………………………………………21 2-9 Experimental setup……………………………………………21 2-10 Chapter discussion………………………………………………22 Chapter 3 Laser and EDF 3-1 Basics…………………………………………27 3-2 Absorption and emissions of lights by photons…………………………………………29 3-3 Creating a Population Inversionv31 3-4 Erdium doped fiber …………………………………………32 3-5 EDF theory…………………………………………34 3-6 Erdium doped fiber rate equation…………………………………………37 3-7 Fiber laser versus lasers…………………………………………39 3-8 L-band fiber laser…………………………………………41 Chapter 4 Linear cavity fiber laser experiment 4-1 L-band EDF theory…………………………………………43 4-2 Experimental setup …………………………………………45 4-3 Type I Linear cavity fiber laser forward pumping…………………………………………45 4-4 Effect of fiber length……………………………………………48 4-5 Effect of pump power…………………………………………48 4-6 Transfer Efficiency ……………………………………………50 4-7 Type II Linear cavity fiber laser backward pumping……………52 4-8 Effect of fiber length……………………………………………54 4-9 Effect of pump power…………………………………………56 4-10 Transfer Efficiency ……………………………………………57 Chapter 5 Linear cavity fiber laser experiment 5-1 Type III Fiber Laser Forward pump with C+L WDM.…………59 5-2 Effect of fiber length………………………………………………61 5-3 Effect of Pump power……………………………………………63 5-4 Transform efficiency………………………………………………63 5-5 Type IV Fiber Laser Backward pump with C+L WDM…………65 5-6 Effect of fiber length………………………………………………67 5-7 Effect of pump power…………………………………………69 5-8 Transfer Efficiency ………………………………………………69 5-9 WDM device measurement…………………………………………71 5-10 ASE analysis………………………………………………………73 5-11 Chapter Discussion………………………………………………78 Chapter 6 Conclusion 6-1 Summary …………………………………………81 6-2 Future work…………………………………………………………81 Reference………………………………………………………………83

    Reference
    [1]賴英澤, “被動光網路監測技術改良之研究 ,” 國立台灣科技大學碩士論文, 2006.
    [2]C. H. Lee, “Passive optical networks for FTTX applications,” OFC/NFOEC 2005, Anaheim, CA, vol. 3, pp. 3, 2005.
    [3]Raman Kashyap, “Fiber Bragg Grating”, Academic Press 1999
    [4]E. Snitzer and R. Woodcock , “Yb super 3 super plus-er super 3 super plus glass laser, ” Appl. Phys. Lett., vol. 6, pp. 45-46, February 1965.
    [5]E. Snitzer, “Fiber laser device provided with long flexible energy-directing probe-like structure,” United States Patent, no. 3471215.
    [6]M. Matsuura and N. Kishi, “Frequency control characteristics of a single-frequency fiber laser with an external light injection,” IEEE Journal of Quantum Electronics, vol. 7, no. 1, pp. 55-58, 2001.
    [7]黃裕家, “單向及雙向幫激架構摻鉻釔鋁石榴石晶體光纖之自發輻射放大光源模擬與實驗之研究,” 國立中山大學碩士論文, 2003.
    [8]H. J. Dutton, “Understanding optical communication,” Prentice Hall, 1999.
    [9]陳宣臣, “波長可調光纖光柵之研製與應用,” 國立台灣科技大學碩士論文, 2004.
    [10]王俊容, “光纖光柵與光循環器組成之光纖雷射:研製與應用,” 國立台灣科技大學論文, 2005.
    [11]洪寬綸, “建構於光纖光柵之光纖雷射、光感測與光監控技術之研究,” 國立台灣科技大學碩士論文, 2006.
    [12]S. K. Liaw, H. Y. Tseng, and S. Chi, “Parallel pump-shared linear-cavity lasers array using 980 nm pump reflectors or N pieces of gain fibers as self-equalizers,” IEEE Photonics Technology Letters, vol. 12, no. 1, pp. 19-21, 2000.
    [13]H. Chen, F. Babin, M. Leblance, and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 185-187, 2003.
    [14]S. H. Chang, I. K. Hwang, B. Y. Kim, and H. G. Park, “Widely tunable single-frequency Erbium-doped fiber laser with long linear cavity,” IEEE Photonics Technology Letters, vol. 13, issue. 4, pp. 287-289, 2001.
    [15]L. M. Tsay and W. F. Liu, “Tunable fiber laser using a fiber loop and a fiber Bragg grating,” Optics and Photonics Taiwan’02, Taipei, Taiwan, R.O.C., pp. 534-536, 2002.
    [16]Y. W. Somg, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technology Letters, vol. 13, no. 11, 2001.
    [17]M. K. Rahman, S. Selvakennedy, P. Poopalan, and H. Ahmad, “Operating wavelength of Erbium-doped fiber-ring laser,” Microwave and Optical Technology Letters, vol. 31, issue 2, pp. 105-107, 2001.
    [18]C. X. Shi, “A novel single-mode Erbium-doped fiber-ring laser: experiment,” Microwave and Optical Technology Letters, vol. 11, issue 4, pp. 187-190, March 1996.
    [19]Q. Mao and J. W. Y. Lit, “Multi-wavelength Erbium-doped fiber laser with active overlapping linear cavities,” Journal of Lightwave Technology, vol. 21, pp. 160-169, 2003.
    [20]S. K. Liaw, H. C. Chen, and Y. C. Lai, “C-band continuously tunable lasers based on fiber Bragg gratings,” Opto-Electronic and Communication Conference 2004, Yokohama, Japan, July 2004.
    [21]S. W. Harun, M. Z. Zulkifli, and H. Ahmad, “A linear cavity S-band Brillouin/Erbium fiber laser,” Laser Physics Letters, vol. 3, issue 7, pp. 369-371, July 2006.
    [22]K. H. Lai, C. H. Yeh, and S. Chi, “Coupled-structure erbium-doped fiber amplifier with 94-nm bandwidth,” Optical Engineering, vol. 44, issue. 5, pp. 1-4, May 2003.
    [23]C. H. Yeh, C. C. Lee, and S. Chi, “S band gain-clamped erbium-doped fiber amplifier by using optical feedback method,” IEEE Photonics Technology Letters , vol. 16, pp. 90-92, January 2003.
    [24]International Telecommunication Union, ITU-T Standard G. 694.1, January 2002.
    [25]A. Bellemare, J.F. Lemieux. M. Tetu, and S. LaRochelle, “Erbium-doped fiber ring lasers step-tunable to exact multiples of 100 GHz (ITU-grid) using periodic filters,” In Proc. Europe Conference Optical Communications , vol. 1, pp. 153-154, 1998.
    [26]T. Haber, K Hsu, C. Miller, and Y. Bao, “Tunable erbium-doped fiber ring laser precisely locked to the 50-GHz ITU,” IEEE Photonics Technology Letters, vol. 12, issue. 11, pp. 1456-1458, 2000.
    [27]Y. Ryu, D. Lee, K. D. Park, W. K. Lee, H. S. Moon, S. K. Kim, and H. Suh, “Discretely tunable erbium-doped fiber ring laser selecting ITU-T grids of 273 channels x 50-GHz spacing in C- and L-band regions,” Applied Physics, vol. 79, no. 5, pp. 583-586, 2004.
    [28]C. H. Yeh, T. T. Huang, H. C. Chien, C. H. Ko, and S. Chi, “Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation,” Optical Society of America, vol. 15, issue. 2, pp. 382-386, 2007.
    [29]N. J. C. Libatique, L. Wang, and R. K. Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Optics and Photonics Taiwan, vol. 10, issue. 25, pp. 1503-1507, 2002.
    [30]Jens Limpert, Fabian R¨oser, Sandro Klingebiel, Thomas Schreiber, Christian Wirth, Thomas Peschel, Ramona Eberhardt, and Andreas T¨unnermann, “The Rising Power of Fiber Lasers and Amplifiers “IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 13, NO. 3, 2007 537
    [31]S. K. Kim, G. Steward, W. Johnstone, and B. Culshaw, Optics and Photonics Taiwan , vol. 38, pp. 5154, 1999.
    [32]J. Zhang, C. Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser, ” Journal of Lightwave Technology, vol. 14, pp. 104-109, 1996.

    [33]洪繼宇, “L-Band摻鉺光纖放大器功率轉換效率改善之研究,” 國立清華大學碩士論文, 2004.
    [34]Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average Inversion Level, Modeling and Physics of Erbium-Doped Fiber Amplifiers,” IEEE Journal of Quantum Electronics, vol. 3, no. 4, 1997.
    [35]H. Ono, M. yamada et al., “1.58-um band gain-flattened Erbium-Doped Fiber Amplifiers for WDM transmission systems,” Journal of Lightwave Technology, vol. 17, no. 3, 1999.
    [36]D. B. Mortimore, S. W. Harun, P. Poopalan, and H. Ahmad, “Gain enhancement in L-band EDFA through a double-pass technique,” IEEE Phonics Technology Letters, vol. 14, no. 3, 2001.
    [37]P. A. Andrekson, N. A. Olsson, P. C. Becker, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and K. W. Wecht, “Observation of multiple wavelength soliton collisions in optical systems with fiber amplifiers,” Applied Physics Letters, vol. 57, pp. 1715-1717, 1990.
    [38]M. M. Liu, “Principles and applications of optical communications,” vol. 35, issue. 12, pp. 3642-3643, 1996.
    [39]Y. Shiquan, Z. Chunliu, M. Hongyun, D. Lei, D. Xiaoyi, Y. Shuzhong, K. Guiyun, and Z. Qida, “Wavelength tunable erbium-doped fiber ring laser operating in L-band,” Optical and Quantum Electronics, vol. 35, pp. 69-73, 2003.
    [40]S. W. Harun, W. Y. Chong, P. Poopalan, and H. Ahmad , “Effect of incorporating a FBG in L-band Erbium-doped fiber laser,” Electronics and Communications, vol. 2, no. 1, 2004.
    [41]J. Zhang and J. W. Y. Lit, “Erbium doped fiber compound-ring laser with a ring filter,” IEEE Photonics Technology Letters, vol. 6, pp. 588 , 1994.
    [42]Digonnet, Michel J. F. “Rare-earth-doped fiber lasers and amplifiers”, New York :Marcel Dekker, 2001.
    [43]P.C.Becker, “Erbium-doped fiber amplifiers”, Academic press 1999
    [44]畢衛紅, 張闖, “光纖Bragg 光柵的反射特性研究,” 傳感器技術,22 期, 第8 卷, 2003.

    QR CODE