簡易檢索 / 詳目顯示

研究生: 賴宥豪
Yu-Hao Lai
論文名稱: 奈米碳管之含氮量對場電子發射特性之影響
Field Emission of Vertically Aligned Carbon Nanotubes with Various Contents of Nitrogen
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 黃鶯聲
Ying-Sheng Huang
葉文昌
none
邱博文
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 77
中文關鍵詞: 奈米碳管熱化學氣相沉積法場發射氮摻雜
外文關鍵詞: Carbon nanotube bundle, Chemical vapor deposition, Field emission, Nitrogen doped
相關次數: 點閱:338下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文成功使用熱化學氣相沉積法成長六角形排列之奈米碳管束陣列,並將氮原子摻雜於奈米碳管中增強其場電子發射特性。此論文中分別使用二種方法將氮原子摻雜於奈米碳管。(1)利用熱化學氣相沉積法成長奈米碳管時加入氨氣於熱爐中,(2)使用熱化學氣相沉積法成長奈米碳管束陣列後,將其樣品置入另一個腔體中,並且使用氮電漿做後處理。藉由電子顯微鏡、穿透式電子顯微鏡、X光光電子能譜、拉曼光譜和電子場發射量測系統分析與量測含氮之奈米碳管的特性。在本實驗中將探討不同之氨氣壓力與氮電漿處理時間對奈米碳管場發射之影響。由實驗結果可得知最佳的成長條件和含氮量。當奈米碳管在氨氣壓力為6 Torr (0.59 at. %)和氮電漿處理時間為70分鐘(4.08 at. %)時,可得到最小的臨界電場和最佳含氮量,分別為2.4 V/m 與2.3 V/m。


Arrays of carbon nanotube (CNT) bundles with hexagonal arrangement were synthesized by thermal chemical vapor deposition (CVD). It is known that nitrogen doping of CNTs can enhance field emission of these arrays. In this study, two methods were employed to form N-doped CNTs. (1) N-doped CNT bundle arrays were synthesized in a thermal CVD system with a mixture of C2H2 and ammonia (NH3). (2) After the synthesis of CNT bundle arrays by thermal CVD, the samples were transferred to another chamber for nitrogen plasma treatment to form nitrogen-doped vertically aligned CNT bundle arrays. The characteristics of the nitrogen-doped CNT bundles were investigated by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), x-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results revealed that there exists an optimal synthesis condition and nitrogen content for enhancing field emission. The lowest observed threshold electric field (Eth) was 2.4 V/m when 6 Torr (0.59 at.%) NH3 pressure was used and 2.3 V/m after 70 min (4.08 at.%) of nitrogen plasma treatment.

Contents Abstract (in Chinese) ------------------ I Abstract (in English) ------------------------------------------------------------------- II Acknowledgement (in Chinese) ------------------------------------------------------- III Contents ----------------------------------------------------------------------------------- IV Figure captions --------------------------------------------------------------------------- VI Table list ----------------------------------------------------------------------------------- IX Chapter 1 Introduction ----------------------------------------------------------------- 1 1.1 Structure and property of carbon nanotubes ------------------------ 1 1.1.1 Structure ------------------------------------------------------------ 2 1.1.2 Electrical properties ----------------------------------------------- 3 1.2 Application of carbon nanotubes ------------------------------------- 4 1.2.1 Flat panel field emission display (FEDs) ---------------------- 4 1.2.2 Cathode ray tubes lighting elements --------------------------- 5 1.2.5 X-ray source ------------------------------------------------------- 6 1.3 Field emission ----------------------------------------------------------- 7 1.3.1 Theory of field emission ----------------------------------------- 7 1.3.2 Parameters that affect the emission property of CNTs ------- 9 1.4 Material of cold cathode emitter for field emission displays ------ 11 1.4.1 Spindt-type field emitters ---------------------------------------- 12 1.4.2 Si tip field emittrs ------------------------------------------------- 13 1.4.3 Diamond film ------------------------------------------------------ 13 1.4.4 Zinc Oxide nanowire --------------------------------------------- 13 1.4.5 Ruthenium dioxide ------------------------------------------------ 14 1.4.6 Carbon nanotubes ------------------------------------------------- 14 1.5 Motivation --------------------------------------------------------------- 16 1.5.1 CNT bundles array fabrication ----------------------------------- 16 1.5.2 Optimal arrangement --------------------------------------------- 17 1.5.3 Doping impurities ------------------------------------------------- 18 Chapter 2 Experimental methods -------------------------------------------------- 20 2.1 Experimental process flow chart -------------------------------------- 20 2.2 Experimental apparatus ----------------------------------------------- 21 2.2.1 Thermal chemical vapor deposition system ------------------- 21 2.2.2 Thermal evaporation system ------------------------------------- 23 2.3 Experimental procedure ----------------------------------------------- 25 2.3.1 Substrate preparation ---------------------------------------------- 25 2.3.2 Photolithography -------------------------------------------------- 25 2.3.3 Thermal evaporation ---------------------------------------------- 27 2.3.4 Growth of carbon nanotubes ------------------------------------- 27 2.3.5 N-doped CNT preparation --------------------------------------- 29 2.3.5.1 Mixture NH3 and C2H2 ---------------------------------- 29 2.3.5.2 Nitrogen plasma treatment ----------------------------- 30 2.4 Characterization and analysis of carbon nanotubes ---------------- 31 2.4.1 Scanning electron microscopy system -------------------------- 31 2.4.2 High resolution transmission electron microscopy ------------ 31 2.4.3 Micro-Raman spectroscopy system ----------------------------- 31 2.4.4 X-ray photoelectron spectroscopy ------------------------------ 32 2.4.5 Field emission measurement system --------------------------- 32 Chapter 3 Results and discussion ---------------------------------------------------- 35 3.1 Mixture of NH3 and C2H2 --------------------------------------------- 35 3.2 Nitrogen plasma treatment --------------------------------------------- 45 Chapter 4 Conclusion ------------------------------------------------------------------- 57 References --------------------------------------------------------------------------------- 58

References

1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, Nov. 1991.
2. M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. McAleese, M. Marchywka, D. G. Socker, and J. F. Hochedez, “Diamond cold cathode,” IEEE Electron Device Lett., vol. 12, pp. 456-459, Aug. 1991.
3. J. Robertson, “Electron field emission from diamond and diamond-like carbon for field emission displays,” Carbon, vol. 37, pp. 759-763, Apr. 1999.
4. G. A. J. Amaratunga and S. R. P. Silva, “Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes,” Appl. Phys. Lett., vol. 68, pp. 2529-2531, Apr. 1996.
5. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-Oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, pp. 512-516, Jun. 1999.
6. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett., vol. 75, pp. 3129-3131, Sep. 1999.
7. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single nanotube,” Nature, vol. 393, pp. 49-52, May 1998.
8. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fisher, and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes,” Science, vol. 273, pp. 483-487, Jul. 1996.
9. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Y. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, “Fullerene pipes,” Science, vol. 280, pp.1253-1256, May 1998.
10. K. Tanaka, K. Okahara, M. Okada, and T. Yamabe, “Electronic properties of bucky-tube model,” Chem. Phys. Lett., vol. 191, pp. 469-472, Apr. 1992.
11. J. W. Mintmire and C. T. White, “Electronic and structural properties of carbon nanotubes,” Carbon, vol.33, pp. 893-902, Feb. 1995.
12. Y. Saito, S. Uemura, and K. Hamaguchi, “Cathode ray tube lighting elements with carbon nanotube field emitters,” Jpn. J. Appl. Phys., vol.37, pp. L346-L348, Mar. 1998.
13. Y. B. Zhang, S. P. Lau, L. Huang, and M. Tanemura, “Carbon nanotubes synthesized by biased thermal chemical vapor deposition as an electron source in an x-ray tube,” Appl. Phys. Lett., vol. 86, pp. 123115-1-123115-3, Mar. 2005.
14. R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London A, vol. 119, pp. 173-181, May 1928.
15. W. A. De Heer, A. Chatelain, and D. Ugrate, “A carbon nanotube field-emission electron source,” Science, vol. 270, pp. 1179-1180, Nov. 1995.
16. J. M. Bonard, J. P. Salvetat, T. Stöckli, W. A. De Heer, L. Forró, and A. Châtelain, “Field emission from single-wall carbon nanotube films,” Appl. Phys. Lett., vol. 73, pp. 918-920, Aug. 1998.
17. J.-M. Bonard, J.-P. Salvetat, T. Stöckli, L. Forró, and A. Châtelain, “Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism,” Appl. Phys. A, vol. 69, pp. 245-254, Jul. 1999.
18. Y. Saito and S. Uemura, ”Field emission from carbon nanotubes and its application to electron sources,” Carbon, vol. 38, pp. 169-182, Jun. 2000.
19. T. S. Fahlen, “Performance advantages and fabrication of small gate openings in Candescent’s thin CRT,” in Proceedings IVMC, 1999, pp. 56-59.
20. B. R. Chalamala, B. E. Gnade, and Y. Wei, “FED up with fat tubes,” IEEE Spectrum, vol. 35, pp. 42-51, Apr. 1998.
21. Y. Fukuda, S. Miyaguchi, S. Ishizuka, T. Wakimoto, J. Funaki, H. Kubota, T. Watanabe, H. Ochi, T. Sakamto, M. Tsuchida, I. Ohshita, H. Nakada, and T. Tohma, “Organic LED full-color passive-matrix display,” SID 99 Digest, vol. 30, pp. 430-433, May. 1999.
22. C. A. Spindt, “A thin film emission cathode,” J. Appl. Phys., vol. 39, pp. 3504-3505, Feb. 1968.
23. R. Meyer, A. Ghis, P. Rambaud, and F. Muller, “Microchip florescent display,” in Proc. Japan Display, vol. 86, Oct. 1985, pp. 513-516.
24. M. Ding, H. Kim, and A. I. Akinwande “Highly uniform and low turn-on voltage Si field emitter arrays fabricated using chemical mechanical polishing,” IEEE Electron Device Letters, vol. 21, pp. 66-69, Feb. 2000.
25. S. Y. Li, P. Lin, C. Y. Lee, and T. Y. Tseng, “Field emission and hotofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process,” J. Appl. Phys., vol. 95, pp. 3711-3716 , Apr. 2004.
26. Y. B. Li, Y. Bando, and D. Golgerg, “ZnO nanoneedles with tip surface perturbations: excellent field emitters,” Appl. Phys. Lett., vol. 84, pp. 3603-3605, May 2004.
27. J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater., vol. 14, pp.215-218, Feb. 2002.
28. B. P. Zhang, K. Wakatsuki, N. T. Binh, Y. Segawa, and N. Usami, “Low-temperature growth of ZnO nanostructure networks,” J. Appl. Phys., vol. 96, pp. 340-343, Jul. 2004.
29. S. Y. Li, P. Lin, C. Y. Lee, M. S. Ho and T. Y. Tseng, “Fabrication of vertical ZnO nanowires on Silicon(100) with epitaxial ZnO buffer layer,” J. Nanosci. Nanotech., vol. 4, pp. 968-971, Nov. 2004.
30. M. Tomkiewicz, Y. S. Hung, F. H. Pollak, “The potential of zero charge of oriented single-crystal RuO2 in aqueous electrolytes,” J. Electrochem. Soc., vol. 130, pp. 1514-1518, Jul. 1983.
31. C. S. Hsieh, G. Wang, D. S. Tsai, R. S. Chen, and Y. S. Huang, “Field emission characteristics of ruthenium dioxide nanorods,” Nanotechnology, vol. 16, pp. 1885-1891, Jul. 2005.
32. A. Korotcov, Y.-S. Hung, T.-Y. Tsai, D.-S. Tsai, and K.-K. Tiong, “Effect of length, spacing and morphology of vertically aligned RuO2 nanostructures on field-emission properties,” Nanotechnology, vol. 17, pp. 3149-3153, Jun. 2006.
33. H. Gao, C. Mu, F. Wang, D. Xu, K. Wu, Y. Xie, S. Liu, E. Wang, J. Xu, and D. Yu, “Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template,” J. Appl. Phys., vol. 93, pp. 5602-5605, May 2003.
34. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett., vol. 76, pp. 2071-2073, Apr. 2000.
35. O. Gröning, O. M. Küttel, Ch. Emmenegger, P. Gröning, and L. Schlapbach, “Field emission properties of carbon nanotubes,” Vacuum, vol. 18, pp. 665-678, May 2000.
36. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, pp. 512-514, Jan. 1999.
37. Y. C. Choi, Y. M. Shin, D. J. Bae, S. C. Lim, Y. H. Lee, and B. S. Lee, “Patterned growth and field emission properties of vertically aligned carbon nanotubes,” Diamond Relat. Mater., vol. 10, pp. 1457-1464, Nov. 2001.
38. S. Huang, A. W. H. Mau, T. W. Turney, P. A. White, and L. Dai, “Patterned growth of well-aligned carbon nanotubes: A soft-lithographic approach,” J. Phys. Chem. B, vol. 104, pp. 2193-2196, Mar. 2000.
39. V. B. Golovko, H. W. Li, B. Kleinsorge, S. Hofmann, J. Geng, M. Cantoro, Z. Yang, D. A. Jefferson, B. F. G. Johnson, W. T. S. Huck, and J. Robertson, “Submicron patterning of Co colloid catalyst for growth of vertically aligned carbon nanotubes,” Nanotechnology, vol. 16, pp. 1636-1640, Jul. 2005.
40. S. M. C. Vieira, K. B. K. Teo, W. I. Milne, O. Gröning, L. Gangloff, E. Minoux, and P. Legagneux, “Investigation of field emission properties of carbon nanotube arrays defined using nanoimprint lithography,” Appl. Phys. Lett., vol. 89, pp. 022111-022113, Jul. 2006.
41. S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, D. Z. Wang, and Z. F. Ren, “Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties,” Appl. Phys. Lett., vol. 82, pp. 3520-3522, May 2003.
42. M. Katayama, K.-Y. Lee, S. Honda, T. Hirao, and K. Oura, “Ultra-low-threshold field electron emission from pillar array of aligned carbon nanotube bundles,” Jpn. J. Appl. Phys., vol. 43, pp. L774-L776, May 2004.
43. X.-Q. Wang, Y.-B. Xu, H.-L. Ge, and M. Wang, “Optimization for field emission from carbon nanotubes array in hexagon,” Diamond Relat. Mater., vol. 15, pp. 1565-1569, Feb. 2006.
44. T.-W. Weng, Y.-H. Lai, and K.-Y. Lee, “Area effect of patterned carbon nanotube bundle on field electron emission characteristics,” Appl. Surf. Sci. (In press).
45. S. Fujii, S. Honda, H. Machida, H. Kawai, K. Ishida, M. Katayama, H. Furuta, T. Hirao, and K. Oura, “Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect,” Appl. Phys. Lett., vol. 90, pp. 153108-153110, Apr. 2007.
46. R. B. Sharma, D. J. Late, D. S. Joag, A. Govindaraj, and C. N. R. Rao, “Field emission properties of boron and nitrogen doped carbon nanotubes,” Chem. Phys. Lett., vol. 428, pp. 102-108, Jul. 2006.
47. G. Zhang, W. Duan, and B. Gu, “Effect of substitutional atoms in the tip on field-emission properties of capped carbon nanotubes,” Appl. Phys. Lett., vol. 80, pp. 2589-2591, Apr. 2002.
48. M. Glerup, J. Steinmetz, D. Samaille, O. Stephan, S. Enouz, A. Loiseau, S. Roth, and P. Bernier, “Synthesis of N-doped SWNT using the arc-discharge procedure,” Chem. Phys. Lett., vol. 387, pp. 193-197, Nov. 2004.
49. Y. Zhang, H. Gu, K. Suenaga, and S. Iijima, “Heterogeneous growth of B-C-N nanotubes by laser ablation,” Chem. Phys. Lett., vol. 279, pp. 264-269, Nov. 1997.
50. K. Suenaga, M. Yudasaka, C. Colliex, and S. Iijima, “Radially modulated nitrogen distribution in CNx nanotubular structures prepared by CVD using Ni phthalocyanine,” Chem. Phys. Lett., vol. 316, pp. 365-372, Jan. 2000.
51. P. Liu, Q. Sun, F. Zhu, K. Jiang, L. Liu, Q. Li, and S. Fan, “Measuring the work function of carbon nanotubes with thermionic method,” Nano Lett., vol. 8, pp. 647-651, Nov. 2008.
52. M. Kaukonen, R. M. Neiminen, S. Pöykkö, and A. P. Seitsonen, “Nitrogen doping of amorphous carbon surfaces,” Phys. Rev. Lett., vol 83, pp. 5346-5349, Dec. 1999.
53. W. S. Bacsa, D. Ugarte, A. Châtelain, and W. A. de Heer, “High-resolution electron microscopy and inelastic light scattering of purified mutishelled carbon nanotubes,” Phys. Rev. B, vol. 50, pp. 15473-15476, Nov. 1994.
54. S. Maldonado, S. Morin, and K. J. Stevenson, “Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping,” Carbon, vol. 44, pp.1429-1437, Jan. 2006.
55. C. Gao, Y. Z. Jin, H. Kong, R. L. D. Whitby, S. F. A. Acquah, G. Y. Chen, H. Qian, A. Hartschuh, S. R. P. Silva, S. Henley, P. Fearon, H. W. Kroto, and D. R. M. Walton, “Polyurea-functionalized multiwalled carbon nanotubes: Synthesis, morphology, and Raman spectroscopy,” J. Phys. Chem. B, vol. 109, pp. 11925-11932, Apr. 2005.
56. L. H. Chan, K. H. Hong, D. Q. Xiao, W. J. Hsieh, S. H. Lai, H. C. Shih, T. C. Lin, F. S. Shieu, K. J. Chen, and H. C. Cheng, “Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes,” Appl. Phys. Lett., vol. 82, pp. 4334-4336, Jun. 2003.
57. J.-M. Ting and S.-H. Lin, “Growth and characteristics of carbon nanotubes obtained under different C2H2/H2/NH3 concentrations,” Carbon, vol. 45, pp. 1934-1940, Jun. 2007.
58. C. Ronning, H. Feldermann, R. Merk, and H. Hofsäss, “Carbon nitride deposited using energetic species: A review on XPS studies,” Phys. Rev. B, vol. 58, pp. 2207-2215, Jul. 1998.
59. R. Droppa Jr., P. Hammer, A. C. M. Carvalho, M. C. dos Santos, and F. Alvarez, “Incorporation of nitrogen in carbon nanotubes,” J. Non-Cryst. Solids, vol. 299-302, pp. 874-879, Apr. 2002.
60. Y. Qin and M. Hu, “Effects of microwave plasma treatment on the field emission properties of printed carbon nanotubes Ag nano-particles films,” Appl. Surf. Sci., vol. 254, pp. 1757-1762, Jan. 2008.
61. W. S. Kim, H. Oki, A. Kinoshita, K. Murakami, S. Abo, F. Wakaya, and M. Takai, “Relationship between field-emission characteristics and defects measured by Raman scattering in carbon-nanotube cathodes treated by plasma and laser,” J. Vac. Sci. Technol. B, vol. 26(2), pp. 760-763, Apr. 2008.
62. A. Gohel, K. C. Chin, Y. W. Zhu, C. H. Sow, and A. T. S. Wee, “Field emission properties of N2 and Ar plasma-treated multi-wall carbon nanotubes,” Carbon, vol. 43, pp. 2530-2535, Oct. 2005.

無法下載圖示 全文公開日期 2013/07/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE