簡易檢索 / 詳目顯示

研究生: 張鴻偉
Hong-Wei Chang
論文名稱: 以電漿輔助化學氣相沈積法合成低介電係數膜及非晶矽薄膜之研究
Synthesis of Low-K Films and Amorphous Silicon Films by Plasma Enhanced Chemical Vapor Deposition
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 周賢鎧
Shyankay Jou
葉文昌
Wen-chang Yeh
丁定國
Ding-Kuo Ding
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 103
中文關鍵詞: 電漿輔助化學氣相沉積低介電係數非晶矽微晶矽
外文關鍵詞: PECVD, low dielectric constant, amorphous silicon, microcrystalline silicon
相關次數: 點閱:388下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以平板式電漿輔助化學氣相沉積系統為基礎,分為兩部分:第一部份為成長低介電係數薄膜,實驗採用一矽烷偶合劑γ-glycidoxypropyl-trimethoxysilane(γ-GPS)及辛氟甲苯(C7F8)為原料先驅物,藉由添加氧氣來改變薄膜的組成,發現從沒有添加氧氣(O2/ γ-GPS流量比為0 )到O2/ γ-GPS流量比為3時,薄膜中的Si與O含量分別由3.24 %增加至34.95 %,以及13.86 %增加至49.41 %。而薄膜的介電係數(k)值,在O2/ γ-GPS流量比為2時有一最小值k=2.8。將試片經退火處理後k值皆有下降趨勢,其中O2/ γ-GPS流量比為2,經退火處理後試片k值可至2.75,經SEM及AFM觀察試片表面有微孔隙,孔隙化程度經公式估算為32.8 %,但薄膜附著力僅24牛頓。
第二部分為成長非晶矽薄膜,實驗以矽甲烷及氫氣為原料,第一階段我們將背景壓力控制在1×10-5 torr,在沈積溫度200℃、總壓100 mtorr、矽甲烷及氫氣流量比為1:20條件下,沈積出含有約4.1 %氧成分的非晶矽薄膜來,此條件的長膜在FT-IR圖譜的波數1080 cm-1處有明顯Si-O訊號。第二階段我們改變腔體設計,包括漏氣率的降低,將裝置背景壓力降低至8×10-8 torr以下,沈積出的非晶矽膜中,已降低了氧含量到XPS的量測極限以下,且在沈積溫度200℃、總壓200 mtorr、矽甲烷流量3 sccm,氫氣流量為28.5 sccm的條件下的長膜,經由拉曼散射測量得知為具體積分率72.6 %的微晶矽,並經XRD量測膜中微晶晶粒大約為23 nm。


In this thesis, we deposited low dielectric constant (low-k) and amorphous silicon films using by a parallel plate PECVD system. In depositing low-k films, we used γ-glycidoxypropyltrimethoxysilane (γ-GPS) and octafluoroluene(C7F8) as precursors, and added oxygen to change film’s composition. When O2/ γ-GPS (gas flow ratio) from 0 to 3, the atomic ratio of Si and O increase from 3.24 % to 34.95 % and 13.86 % to 49.41 %, respectively. The dielectric constant of films had a minimum 2.8 when O2/ γ-GPS ratio at 2 and was down to 2.75 after annealing. In this sample, we could see some nanoporous on film’s surface by using SEM and AFM, porosity was about 32.8 %. But film’s adhesion force was only 24 N.
In another work, we deposited amorphous silicon films on glasses using silane (SiH4) and hydrogen (H2) gas. First, we controlled back pressure at 1×10-5 torr. When substrate temperature was 200℃, working pressure was 100 mtorr and H2/ SiH4 gas flow ratio was 1/20, the amorphous silicon films had an O atomic ratio 4.1 %. The FT-IR spectra appeared S-O bonds around 1080 cm-1 clearly. Second, we reconstructed our vacuum chamber. We could control our back pressure down to 8×10-8 torr in this new chamber. And the silicon films were synthesized by this chamber had an oxygen quantity less than the XPS equipment’s limitation. The films deposited at substrate temperature 200℃, working pressure 200 mtorr, silane flow rate 3 sccm and hydrogen flow rate 28.5 sccm, had a crystalline volume fraction about 72.6 % and the crystal size is about 23 nm.

中文摘要………………………………………………..……………….I 英文摘要………………………………………………..……..…….….III 誌謝………………………………………………………………….…..V 目錄……………………………………………………………...….…..VI 圖索引………………………………………………………….…..…...IX 表索引…………………………………………………………...…. ..XVI 第一章 緒論.…………………………………………………………....1 1.1 以PECVD系統沈積低介電係數薄膜………….………………1 1.1-1化學氣相沈積之有機高分子膜…………………………..4 1.1-2化學氣相沈積之碳氟高分子膜…………………………..4 1.1-3化學氣相沈積之無機/碳氟高分子複合膜……………….5 1.1-4化學氣相沈積之無機膜…………………………………..5 1.1-5化學氣相沈積之無機/有機混成膜……………………….8 1.2以PECVD系統沈積適用於太陽能電池的非晶矽薄膜….….…9 1.2-1控制本質層的雜質…………………………………..…..11 1.2-2調變沈積時的各項參數…….…………………….……..14 1.3 研究目的與方向………………………………………………..15 第二章 實驗相關部分………………………………………………..30 2.1. 實驗氣體與藥品……………………………………………….30 2.2 實驗裝置及方法………………………………………………..32 2.2-1沈積適用於奈米製程之low k薄膜…………………….34 2.2-2沈積適用於太陽能電池之非晶矽薄膜.………….……..36 2.3 分析儀器………………………………………………………..37 第三章 結果與討論…………………………………………………..40 3.1 沈積適用於奈米製程之低介電係數薄膜…………….……….45 3.1.1添加氧氣之長膜特性………………………………….…45 3.1.2退火後之長膜特性…………………………………….....54 3.1.3介電係數探討…………………………………………….61 3.1.4薄膜微結構探討及孔隙度估算………………………….65 3.1.5薄膜附著力……………………………………………….68 3.2沈積適用於太陽能電池之非晶矽薄膜………………………...69 3.2.1不同基材溫度、總壓對成長的矽薄膜品質影響..……….69 3.2.2 PECVD系統的再設計…………………………………...70 3.2.3以改良過後的PECVD系統沈積矽薄膜………………...72 第四章 結論.…………………………………………….….……….....90 參考文獻…………………………………….………….………………93

1. Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall Inc. (2001)
2. 楊正杰、張鼎張、鄭晃忠,”銅金屬與低介電常數材料與製程”,工業材料,第167期,第121頁 (2000)。
3. H. S. Nalwa, ”Handbook of Low and High Dielectric Constant Materials and Their Applications’’, 1 (1999).
4. 沈國宏、李盈壕,”銅製程、低介電材料在未來之應用發展”,電子與材料雜誌,第十期,第145頁 (2001)
5. Z. C. Wu, Z.W. Shiung, C. C. Chiang, W. H. Wu, M. C. Chen, S. M. Jeng, W. Chang, P. F. Chou, S. M. Jang, C. H. Yu, M. S. Liang, “Physical and Electrical Characterization of Methylsilane- and Trimethylsilane-Doped Low Dielectric Constant Chemical Vapor Deposited Oxides”, J. Electrochem. Soc. 148, F127 (2001).
6. 莊達人,VLSI製造技術,高立圖書 ( 2002)。
7. 劉志宏,”低介電常數材料製備與蝕刻製程之研究”,碩士論文,中原大學化工系,2000。
8.K. Endo, T. Tatsumi, “Fluorinated Amorphous Carbon Thin Films Grown by Helicon Plasma Enhanced Chemical Vapor Deposition for Low Dielectric Constant Interlayer Dielectrics “, Appl. Phys. Lett. 68, 2864 (1996).
9. K. Endo, K. Shinoda, T. Tatsumi, “Plasma Deposition of Low-Dielectric-Constant Fluorinated Amorphous Carbon”, J. Appl. Phys. 86, 2739 (1999).
10. Y. Ma, H. Yang, “Structural and Electric Properties of Low Dielectric Constant Fluorinated Amorphous Carbon Films” Appl. Phys. Lett. 72, 3353 (1998).
11. 魏大欽、楊忠諺、劉志宏、游清彥,”比較C F4/C2H2及CF4/C2H6電漿製備低介電材料氟化非晶碳膜之研究”,奈米通訊,第九卷第四期,第33頁 (2002)。
12. 莊琇惠、裘性天、萬振宇、王丁勇、簡昭欣,”含氟非晶性碳膜之研究”,奈米通訊,第九卷第三期,第24頁 (2002)。
13. T. Shirafuji, Y. Miyazaki, Y. Hayashi, S. Nishino, “PE-CVD of Fluorocarbon/SiO Composite Thin Film Using C4F8 and HMDSO”, Plasmas and Polymers 4, 57 (1999).
14. T. Shirafuji, Y. Miyazaki,Y. Nakagami, Y. Hayashi, S. Nishino, “Plasma Copolymerization of Tetrafluoroethylene/Hexamethyldisiloxane and In Situ Fourier Transform Infrared Spectroscopy of Its Gas Phase”, Jpn. J. Appl. Phys. 38, 4520 (1999).
15. A. Nara, H. Itoh, “Low Dielectric Constant Insulator Formed by Downstream Plasma CVD at Room Temperature Using TMS/O2, Jpn. J. Appl. Phys. 36, 1477 (1997).
16. Y. H. Kim, M. S. Huang, H. J. Kim, “ Infrared Spectroscopy Study of Low-Dielectric-Constant Fluorine-Incorporated and Carbon-Incorporated Silicon Oxide Films”, J. Appl. Phys. 90, 3367 (2001).
17. T. Usami, K. Shimokawa, M. Yoshimru, “Low Dielectric Constant Interlayer Using Fluorinated-Doped silicon Oxide”, Jpn. J. Appl. Phys. 33, 408 (1994).
18. S. W. Lim, Y. Shimogaki, “Preparations of Low-Dielectric-Constant F-Doped SiO2 Films by Plasma-Enhanced Chemical Vapor Deposition”, Appl. Phys. Lett. 68, 832 (1996)
19. S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, H. Komiyama, “Preparations of Low-Dielectric-Constant F-Doped SiO2 Films by Plasma-Enhanced Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 35, 1468 (1996).
20. S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, H. Komiyama, “Reduction Mechanism in the Dielectric Constant of Fluorine-Doped Silicon Dioxide Film” J. Electrochem. Soc. 144, 68 (1997)
21. S. M. Han, E. S. Aydil, “Reasons for Lower Dielectric Constant of Fluorinated SiO2 Films, J. Appl. Phys. 83, 2172 (1998).
22. S. M. Han, E. S. Aydil, “Structure and Chemical Composition of Fluorinated SiO2 Films Deposited Using SiF4/O2 Plasma”, J. Vac. Sci. Technol. A 15, 2893 (1997).
23. M. J. Shapiro, S. V. Nguyen, T. Matsuda, D. Dobuzinsky, “CVD of Fluorosilicate Glass for ULSI Applications”, Thin Solid Films 270, 503 (1995).
24. H. Kitoh, M. Muroyama, M. Sayaki, M. Iwasawa, “Formation of SiOF Films by Plasma-Enhanced Chemical Vapor Deposition Using (C2H5O)3SiF”, Jpn. J. Appl. Phys. 35, 1464 (1996).
25. H. Tetsuya, M. Yukinobu, Y. Ryuichi, “Flow Characteristics of SiOF Films in Room Temperature Chemical Vapor Deposition Utilizing Fluoro-trialkoxy-silane Group and Pure Water as Gas Sources”, J. Electrochem. Soc. 140, 3599 (1993).
26. M. Yoshimaru, S. Koizumi, K. Shimokawa, “Interaction between Water and Fluorine-Doped Silicon Oxide Films Deposited by Plasma-Enhanced Chemical Vapor Deposition”, J. Vac. Sci. Technol. A 15, 2915 (1997).
27. H. Miyajima, R. Katsumata, Y. Nakasaki, Y. Nishiyama, N. Hayasaka, “Water Absorption Properties of Fluorine-Doped SiO2 Films Using Plasma-Enhanced Chemical vapor Deposition”, Jpn. J. Appl. Phys. 35, 6217 (1996).
28. M. Yoshimaru, S. Koizumi, K. Shimokawa, “Structure of Fluorine-Doped Silicon Oxide Films Deposited by Plasma-Enhanced Chemical Vapor Deposition”, J. Vac. Sci. Technol. A 15, 2908 (1997).
29. Y. J. Mei, T. C. Chang, S. J. Chang, F. M. Pan, M. S. K. Chen, A. Tuan, S. Chou, C. Y. Chang, “Stabilizing Dielectric Constant of Fluorine-Doped SiO2 Films by N2O and NH3 Plasma Post-Treatment”, Thin Solid Films 308-309, 501 (1997).
30. S. M. Yun, H. Y. Chang, M.S. Kang, C. K. Choi, “Low Dielectric Constant CF/SiOF Composite Film Deposited in a Helicon Plasma Reactor”, Thin Solid Films 341, 109 (1999).
31. P. F. Wang, S. J. Ding, D. W. Zhang, J. T. Wang, W. W. Lee, “An Amorphous SiCOF Film with Low Dielectric Constant Prepared by Plasma-Enhanced Chemical Vapor Deposition”, Thin Solid Films 385, 115 (2001).
32. S. J. Ding, D. W. Zhang, J. T. Wang, W. W. Lee, “Low Dielectric Constant SiO2:C,F Films Prepared from Si(OC2H5)4/C4F8/Ar by Plasma-Enhanced CVD”, Chem. Vap. Deposition 7, 142 (2001).
33. S. J. Ding, L. Chen, X. G. Wan, P. F. Wang, J. Y. Zhang, D. W. Zhang, J. T. Wang, “Structure Characterization of Carbon and Fluorine-Doped Silicon Oxide Films with Low Dielectric Constant”, Mater. Chem. Phys. 71, 125 (2001).
34. J. L. Jr., A. Saitoh, Y. Kurata, T. Inokuma, S. Hasegawa, “Stability of the Dielectric Properties of PECVD Deposited Carbon-Doped SiOF Films”, Thin Solid Films 337, 67 (1999).
35. J. Y. Kim, M. S. Hwang, Y. H. Kim, H. J. Kim, “Origin of Low Dielectric Constant of Carbon-Incorporated Silicon Oxide Film Deposited by Plasma Enhanced Chemical Vapor Deposition”, J. Appl. Phys. 90, 2469 (2001).
36. A. Grill, V. Patel, “Low Dielectric Constant Films Prepared by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane”, J. Appl. Phys. 85, 3314 (1999).
37. L. M. Han, J. S. Pan, S. M. Chen, N. Balasubramanian, J. Shi, L. S. Wong, P.D. Foo, “Characterization of Carbon-Doped SiO2 Low k Thin Films: Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane”, J. Electrochem. Soc. 148, F148 (2001).
38. S. Sugahara, T. Kadoya, K. I. Usami, T. Hattori, M. Matsumura, “Preparation and Characterization of Low-k Silica Film Incorporated with Methylene Groups”, J. Electrochem. Soc. 148, F120 (2001).
39. S. Sugahara, K. I. Usami, M. Matsumura, “A proposed Organic-Silica Film for Inter-Metal-Dielectric Application”, Jpn. J. Appl. Phys., 38, 1428 (1999).
40. J. M. Park, S. W. Rhee, “Remote Plasma-Enhanced Chemical Vapor Deposition of Nanoporous Low-Dielectric Constant SiCOH Films Using Vinyltrimethylsilane”, J. Electrochem. Soc. 149, F92 (2002).
41. K. Teshima, Y. Inoue, H. Sugimura, O. Takai, “ Transparent Silica Films Deposited by Low-Temperature Plasma-Enhanced CVD Using Hexamethyldisiloxane”, Chem. Vap. Deposition 8, 251 (2002).
42. A. Grill, V. Patel, “Ultralow-k Dielectrics Prepared by Plasma-Enhanced Chemical Vapor Deposition”, Appl. Phys. Lett. 79, 803 (2001).

43. Lawrence L. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview ”, J. Electron Spectrosc. Relat. Phenom. 150, 105 (2006)
44. A. V. Shah , H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N.Wyrsch, U. Kroll, C. Droz and J. Bailat, “Thin-film Silicon Solar Cell Technology”, Prog. Photovolt: Res. Appl. 12, 113 (2004)
45. J. CÁRABE and J.J. GANDIA, “Thin-film-silicon solar cells”, Optoelectro. Rev. 12(1), 1 (2004)
46. Jenny Nelson, The Physics of Solar Cells, Imperial College Press (2003)
47. Haruki, Hiromu, Uchida, Yoshiyuki, “Stainless Steel Substrate Amorphous Silicon Solar Cell”, Jpn. Annu. Rev. Electro., Comput. & Telecommun. 6, 216(1983)
48. Masat izu and Stanford R. Ovshinsky, “Roll-to-roll Plasma Deposition Machine for The Production of Tandem Amorphous Silicon Alloy Solar Cells”, Thin Solid film 119, 55(1984)
49. Ishikawa, A., Kruangam, D., Okamoto, H., Hamakawa, Y., “Transparent Polymer Film Type Substrate for Amorphous Silicon Solar Cell”, Conference Record of the IEEE Photovoltaic Specialists Conference, 487(1985)
50. M. Yano, K. Susuki, K. Nakatani and H. Okaniwa, “Roll-to-roll Preparation of a Hydrogenated Amorphous Silicon Solar Cell on a Polymer Film Substrate”, Thin Solid film 146, 75(1987)
51. C. C. Tsai, J. C. Knights, and M. J. Thompson, “'CLEAN' a-Si:H Prepared in A UHV System”, J. Non-Cryst. Solids 66,45(1984)
52. R. W. Griffith, F. J. Kampas, P. E. Vanier, and M. D. Hirsch, “Modifications in Optoelectronic Behavior of Plasma-Deposited Amorphous Semiconductor Alloys via Impurity Incorporation”, J. Non-Cryst. Solids 35&36 391(1980)
53. A. E. Delahoy and R. W. Griffith, “Impurity Effect in a-Si:H Solar Cells due to Air, Oxygen, Nitrogen, Phosphine or Monochlorosilane in the plasma”, J. Appl. Phys. 52, 6337(1981)
54. D. E. Carlson, “Amorphous Thin Films for Terrestrial Solar Cells”, J. Vac. Sci. Technol 20, 3 , 290(1981)
55. Masao Isomura, Toshihiro Kinoshita, Yoshihiro Hishikawa, and Shinya Tsuda, “Influence of oxygen impurity in the intrinsic layer of amorphous silicon solar cells”, Appl. Phys. Lett. 65 , 18,2329(1994)
56. C. C. Tsai, J. C. Knights, R. A. Lujan, B. Wacker, B. L. Stafford and M. J. Thompson, “Amorphous Si prepared in a UHV plasma deposition system”, J. Non-Cryst. Solids 59&60 ,731(1983)
57. O. Tsuji and T. Tatsuta, in Proceedings of the 6th Internatioal Symposium on Plsma Chemistry, VoI. 3, eds. M.I. Boulons and R.J. Munz (1983) pp.782-786.
58. Yukinori Kuwano, Michitoshi Ohnishi, Shinya Tsuda, Yukio Nakashima and Noboru Nakamura, “Preparation and Properties of a-Si Produced by a Consecutive, Separated Reaction Chamber”, Japn. J. Appl. Phys. 21, 3, 413(1982)
59. Tsuda Shinya, Takahama Tsuyoshi, Isomura Masao, Tarui Hisaki, Nakashima Yukio, Hishikawa Yoshihiro, Nakamura Noboru, Matsuoka Tsugufumi, Nishiwaki Hidenori, Nakano Shoichi, Ohnishi Michitoshi, Kuwano Yukinori, “Preparation and Properties of High-quality a-Si Films with a Super Chamber (Separated Ultra-high Vacuum Reaction Chamber).”, Jpn. J. Appl. Phys. 26, 1, 33(1987)
60. Roca i Cabarrocas, P., Liu, J.Z., Park, H.R., Maruyama, A., Wagner, S., “Substrate temperature dependence of the growth kinetics and opto- electronic properties of a-Si:H films deposited by RF glow discharge”, J. Non-Cryst. Solids 114, 190(1989)
61. Yoko Maemura, Hiroshi Fujiyama, Tomoko Takagi, Ryo Hayashi, Wataru Futako, Michio Kondo, Akihisa Matsuda, “Particle Formation and a-Si:H Film Deposition in Narrow-gap RF Plasma CVD”, Thin Solid Film 345, 80(1999)
62. N. Spiliopoulos, D. Mataras, and D. E. Rapakoulias, “Kinetics of Power Deposition and Silane Dissociation in Radio-Frequency Discharges”, J. Electrochem. Soc. 144, 634(1997)
63. Gutierrez, M.T., Carabe, J., Gandia, J.J., Solonko, A., “Effect of Preparation Conditions on the Properties of Glow-discharge Intrinsic Amorphous Silicon ”, Solar Energy Mate. Solar Cells 26, 259(1992)
64. R. A. Street and K. Winer, “The Influence of Growth Conditions on the Equilibrium States in a-Si:H”, J. Non-Cryst. Solids 114, 645(1989)
65. Andujar, J.L., Kasaneva, J., Serra, J., Canillas, A., Roch, C., Morenza, J.L., Bertran, E., “Effects of R.F. Power on Optical and Electrical Properties of Plasma-deposited Hydrogenated Amorphous Silicon Thin Films”, Sens. Actuators A: Phys. 37-38, 733(1993)
66. P. Kocian, G. Bugmann, D. Erni, S. Bourquard, “Influence of Gas Flow Direction on DC Glow-discharge Deposited a-Si Films”, J. Non-Cryst. Solids 59 & 60, 675 (1983)
67. Olivier Leroy, Gérard Gousset, Luís Lemos Alves, Jérôme Perrin and Jacques Jolly, “Two-dimensional Modelling of SiH4-H2 Radio- frequency Discharges for a-Si:H Deposition”, Plasma Sources Sci. Technol. 7, 348 (1998)
68. Chisato Niikura, Michio Kondo, Akihisa Matsuda, “Preparation of Microcrystalline Silicon Films at Ultra High-rate of 10 nm/s using High-density plasma”, J. Non-Cryst. Solids 338-340, 42 (2004)
69. Chisato Niikura, Naho Itagaki, Akihisa Matsuda, “High Rate Growth of High-quality Microcrystalline Silicon Films From Plasma by Interconnected Multi-hollow Cathode”, Surf. Coat. Technol. 201, 5463 (2007)
70. Tetsuya GOTO, Masaki HIRAYAMA, Hiroshi YAMAUCHI, Makoto MORIGUCHI, Shigetoshi SUGAWA and Tadahiro OHMI, “A New Microwave-Excited Plasma Etching Equipment for Separating Plasma Excited Region from Etching Process Region”, Jpn. J. Appl. Phys. 42 , 1887 (2003)
71. 李坤翰,“使用矽烷偶合劑及辛氟甲苯為原料之電漿輔助化學氣相沉積法製造備低介電膜之研究”,碩士論文,台灣科技大學化工系,2006。
72. Thomas W. Mountsier, John A.Samuels, “Precursor Selection for Plasma deposited fluorinated amorphous carbon films”, Thin Solid Film 332, 362(1998)
73. Y. L. Cheng, Y. L. Wang, G. J. Hwang, M. L. O’Neill, E. J. Karwacki, P. T. Liu, C. F. Chen, “ Effect of deposition temperature and oxygen flow rate on properties of low dielectric constant SiCOH film prepared by plasma enhanced chemical vapor deposition using diethoxymethyl- silane”, Surf. & Coat. Technol. 200, 3134(2006)
74. 吳政勳,“使用含碳氟長鏈先驅物TDF-TEOS的電漿輔助化學氣相沈積法製備矽氟/碳氟摻質低介電係數膜之研究”,碩士論文,台灣科技大學化工系,2003。
75. Morgen, M., Ryan, E. T., Zhao, J.-H., Hu, C., Cho, T., Ho P. S. “Low Dielectric Constant Materials For ULSI Interconnects”, Annu. Rev. Mater. Sci. 30, 645(2000)
76. Chisato Niikura, Michio Kondo, Akihisa Matsuda, “High rate growth of device-grade microcrystalline silicon films at 8 nm/s”, Solar Energy Mater. Solar Cells 90, 3223 (2006)
77. Chisato Niikura, Naho Itagaki, Akihisa Matsuda, “High rate growth of high-quality microcrystalline silicon films from plasma by interconnected multi-hollow cathode”, Surf. & Coat. Technol. 201, 5463 (2007)
78. Sumita Mukhopadhyay, Amartya Chowdhury, Swati Ray, “Substrate temperature dependence of microcrystalline silicon growth by PECVD technique”, J. Non-Cryst. Solids 352 , 1045 (2006)
79. Yuliang He, Chenzhong Yin, Guangxu Cheng, Luchun Wang, and Xiangna Liu, G. Y. Hu, “The structure and properties of nanosize crystalline silicon films”, J. Appl. Phys. 75, 797(1994)
80. H. Makihara, A. Tabata, Y. Suzuoki, T. Mizutani, “Effect of the hydrogen partial pressure ratio on the properties of μc-Si:H films prepared by rf magnetron sputtering”, Vacuum 59, 785 (2000)
81. Toshihiro Kamei, Michio Kondo and Akihisa Matsuda, “A Significant Reduction of Impurity Contents in Hydrogenated Micro- crystalline Silicon Films for Increased Grain Size and Reduced Defect Density”, Jpn. J. Appl. Phys. 37, L 265 (1998)

QR CODE