簡易檢索 / 詳目顯示

研究生: 黃瓊儀
Qiong-Yi Huang
論文名稱: 鋁誘發多晶矽結晶於自組裝單分子膜修飾基材之研究
Study of Polycrystalline Silicon Thin Films by Aluminum Induced Crystallization on Self-Assembled Monolayers (SAMs) Modified Substrate
指導教授: 戴龑
Yian Tai
口試委員: 朱瑾
Jinn P. Chu
陶雨臺
Yu-Tai Tao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 128
中文關鍵詞: 氫化非晶矽鋁誘發自主裝單分子
外文關鍵詞: hydrogenated amorphous silicon, aluminum induced crystallization, self-assembled monolayer
相關次數: 點閱:318下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為使用鋁金屬誘發結晶法於非晶矽薄膜中,經由加熱退火後促使非晶矽轉化成多晶矽,使用此方法之優點為可在簡易、低成本的製程中得到晶粒較大之多晶矽薄膜,其中誘發的製程若為操作在低溫下,又可稱為低溫鋁誘發非晶矽製程。
    本實驗將藉由注入氫氣於射頻電漿中沉積形成氫化非晶矽,並且控制不同厚度之氫化非晶矽與退火溫度、時間等參數,達到誘發過程所需之最佳溫度與退火時間。經由拉曼光譜儀測定薄膜之結晶型態、光學顯微鏡觀察試片表面誘發結晶的轉變過程。最後成長自組裝單分子薄膜(self-assembled monolayer, SAM)於不同的界面上修飾表面之特性,經由鋁誘發結晶成多晶矽後,探討單分子薄膜對於多晶矽薄膜之影響,發現使用單分子薄膜,不僅可以增加電子遷移率和降低薄膜內部之載子濃度,再由穿透式電子顯微鏡分析存在於薄膜內部之元素分布,觀察到兩種自組裝單分子薄膜具有不同的薄膜形成發展,並進一步的探討出鋁誘發形成之多晶矽薄膜的形成機制,發現因不同的自組裝單分子薄膜有不同的多晶矽成膜堆積方式。


    Polycrystalline silicon (poly-Si) thin film fabricated on transparent substrate remains challenging. Aluminum-induced crystallization is a promising process for the fabrication of polysilicon on glass substrate and it could be considered as a low temperature annealing process. Due to the low temperature annealing process, polysilicon can be used as substrates and in future, it might be expected to use in the electronics industry.
    In this study, we combined the amorphous silicon that is coated on glass substrate using RF-sputtering with aluminum to transform the hydrogenated amorphous silicon into polycrystalline silicon by aluminum induced layer exchange (ALILE) process. As a result, the crystallization process temperature further decreased to the lowest temperature due to the hydrogenation amorphous silicon and we obtained the polycrystalline silicon with good crystallinity and larger grain size.
    In our approach, we have used self-assembled monolayers with different functional groups to modify the surface of glass substrate to modulate the surface tension, wettability, and polarity of the substrate prior to the growth of silicon and ALILE process. The fabricated polycrystalline silicon was characterised by TEM, Raman, XRD and Hall measurement. Our finding paves a way for the fabrication of polycrystalline silicon on glass substrate with lower processing temperature and better quality of the polycrystalline silicon. Especially, the self-assembled monolayers modified glass substrate improved the mobility and crystallinity of polycrystalline silicon. Further, we are studying the mechanism of exchanging layer during the aluminum induced layer exchange crystallization process.

    中文摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 多晶矽薄膜介紹 4 1.2-1 固相結晶法(solid phase crystallization) 6 1.2-2 準分子雷射再結晶法(excimer laser crystallization) 7 1.2-3金屬誘發法(metal induced crystallization, MIC) 8 1.2-4 低溫多晶矽(low temperature poly-silicon, LTPS) 10 1.3 研究動機 11 第二章 基本理論 13 2.1 自組裝單分子層薄膜(Self-assembled monolayer,SAM) 13 2.2 氫化非晶矽薄膜(hydrogenated amorphous silicon, a-Si:H) 16 2.3 電漿原理 19 2.4 濺鍍原理 21 2.4-1 直流濺鍍(DC-sputter) 22 2.4-2 射頻濺鍍(RF-sputter) 23 2.4-3 熱蒸鍍(Thermal evaporation) 24 2.5 薄膜成長機制 25 第三章 實驗 29 3.1 實驗藥品與耗材 29 (1) 基板 29 (2) 氣體 29 (3) 藥品 29 3.2 實驗儀器與分析設備 32 3.3 實驗架構和目的 33 3.4 實驗步驟 34 3.4-1 實驗流程 34 3.4-2 清洗基材 35 3.4-3 自組裝單分子薄膜(SAMs)之成長 35 3.4-4 利用射頻濺鍍(RF Sputtering)系統沉積矽薄膜 38 3.4-5 利用熱蒸鍍系統(thermal evaporation system)沉積鋁薄膜 39 3.4-6 利用金屬誘發結晶法形成多晶矽薄膜 40 3.4-7 蝕刻 40 3.5 分析量測儀器之簡介 41 3.5-1 接觸角測量儀(contact angle) 41 3.5-2 表面形態輪廓儀(α-step) 41 3.5-3 拉曼震動光譜儀(Raman spectrum) 41 3.5-4 霍爾量測儀(Hall measurement) 43 3.5-5 X射線光電子能譜儀(x-ray photoelectron spectroscopy, XPS) 46 3.5-6 高功率X光繞射儀(high power x-ray diffractometer, D8) 47 3.5-7 場發射掃描式電子顯微鏡(field-emission scanning electron microscope, FE-SEM) 48 3.5-8 穿透式電子顯微鏡(transmission electron microscope, TEM) 49 第四章 結果與討論 51 4.1 利用鋁金屬誘導法將非晶矽轉化成多晶矽 51 4.1-1 在不同鍛燒溫度利用鋁金屬誘導法將非晶矽轉化成多晶矽 52 4.1-2 在不同鍛燒時間利用鋁金屬誘導法將非晶矽轉化成多晶矽 62 4.1-3 減少非晶矽薄膜厚度降低金屬誘導法之退火溫度 68 4.2 利用鋁金屬誘導法將氫化非晶矽轉化成多晶矽 72 4.2-1 在不同氫化非晶矽厚度下利用鋁金屬誘導法轉化成多晶矽 72 4.2-2 在不同退火時間於固定氫化非晶矽厚度下利用鋁金屬誘導法轉化成多晶矽 78 4.2-3 未修飾薄膜經退火溫度200℃鍛燒4小時之結晶分析 85 4.3 使用自組裝單分子薄膜修飾表面利用鋁金屬誘導氫化非晶矽轉化成多晶矽 88 4.3-1 使用不同官能基之SAMs對於非晶矽影響之分析 88 4.3-1-1 將不同SAMs對於基材表面修飾後進行鋁誘發成多晶矽之分析 91 4.3-1-2 將不同SAMs對於金屬表面修飾後進行鋁誘發成多晶矽之分析 98 4.3-2 NH2-SAM對於基板表面修飾後進行鋁誘發成多晶矽之分析 104 4.3-3-1 退火時間對於NH2-SAM影響多晶矽之分析 105 4.3-3 TDFOS-SAM對於基板表面修飾後進行鋁誘發成多晶矽之分析 108 4.3-3-1 利用TDFOS-SAM修飾不同位置之表面後進行鋁誘發成多晶矽之分析 108 4.4 利用穿透式電子顯微鏡觀察NH2-SAM與TDFOS-SAM於多晶矽薄內之影響 115 4.5 使用TDFOS-SAM修飾基板表面之另一特性分析 119 第五章 結果與未來展望 122 參考文獻 124

    [1] “Renewables 2014 Global Status Report,” Renew. Energy Policy Netw. 21st Century, Jun. 2014.
    [2] M. Yu, Y.-Z. Long, B. Sun, and Z. Fan, “Recent advances in solar cells based on one-dimensional nanostructure arrays,” Nanoscale, vol. 4, no. 9, pp. 2783–2796, Apr. 2012.
    [3] 顧鴻濤, 太陽能電池元件導論: 材料、元件、製程、系統, 二版修訂. 新北市[五股區]: 全威, 101AD.
    [4] 黃惠良, 太陽電池: 太陽能轉換成電能的最佳裝置. 臺北市: 五南, 2008.
    [5] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., vol. 25, no. 5, pp. 676–677, May 1954.
    [6] J. I. Pankove and D. E. Carlson, “Electrical and Optical Properties of Hydrogenated Amorphous Silicon,” Annu. Rev. Mater. Sci., vol. 10, no. 1, pp. 43–63, 1980.
    [7] 翁敏航, 太陽能電池: 原理、元件、材料、製程與檢測技術. 臺北市: 臺灣東華, 99.
    [8] D. Fischer, S. Dubail, J. A. Anna Selvan, N. P. Vaucher, R. Platz, C. Hof, U. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, A. Shah, and K.-D. Ufert, “The ‘micromorph’ solar cell: extending a-Si:H technology towards thin film crystalline silicon,” in , Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, 1996, 1996, pp. 1053–1056.
    [9] M. Y. Yeh, C. C. Lee, G. Y. Tzeng, and Y. F. Luo, “Characteristics of N-Type Polycrystalline Silicon Thin Films on Glass Substrates Deposited at Room Temperature by Direct Current Magnetron Sputtering under Substrate Biases,” Jpn. J. Appl. Phys., vol. 48, no. 5R, p. 056505, May 2009.
    [10] S.-I. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, and M. L. Simpson, “Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias,” Appl. Phys. Lett., vol. 89, no. 2, p. 022104, Jul. 2006.
    [11] D. Raha and D. Das, “Controlling the growth of nanocrystalline silicon by tuning negative substrate bias,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 12, pp. 3181–3188, Dec. 2011.
    [12] N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, V. G. Sathe, S. W. Gosavi, and S. R. Jadkar, “Influence of deposition pressure on structural, optical and electrical properties of nc-Si:H films deposited by HW-CVD,” J. Phys. Chem. Solids, vol. 72, no. 6, pp. 685–691, Jun. 2011.
    [13] D. Toet, B. Koopmans, P. V. Santos, R. B. Bergmann, and B. Richards, “Growth of polycrystalline silicon on glass by selective laser‐induced nucleation,” Appl. Phys. Lett., vol. 69, no. 24, pp. 3719–3721, Dec. 1996.
    [14] P. I. Widenborg and A. G. Aberle, “Surface morphology of poly-Si films made by aluminium-induced crystallisation on glass substrates,” J. Cryst. Growth, vol. 242, no. 3–4, pp. 270–282, Jul. 2002.
    [15] T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka, and S. Tsuda, “High-quality polycrystalline silicon thin film prepared by a solid phase crystallization method,” J. Non-Cryst. Solids, vol. 198–200, Part 2, pp. 940–944, May 1996.
    [16] R. B. Bergmann, G. Oswald, M. Albrecht, and V. Gross, “Solid-phase crystallized Si films on glass substrates for thin film solar cells,” Sol. Energy Mater. Sol. Cells, vol. 46, no. 2, pp. 147–155, May 1997.
    [17] M. A. Crowder, A. T. Voutsas, S. R. Droes, M. Moriguchi, and Y. Mitani, “Sequential lateral solidification processing for polycrystalline Si TFTs,” IEEE Trans. Electron Devices, vol. 51, no. 4, pp. 560–568, Apr. 2004.
    [18] K. Ishikawa, M. Ozawa, C.-H. Oh, and M. Matsumura, “Excimer-Laser-Induced Lateral-Growth of Silicon Thin-Films,” Jpn. J. Appl. Phys., vol. 37, no. 3R, p. 731, Mar. 1998.
    [19] D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, M. Kamenova, and J.-C. Pivin, “Polycrystalline silicon thin films on glass substrate,” Thin Solid Films, vol. 451–452, pp. 303–307, Mar. 2004.
    [20] O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature,” Appl. Phys. Lett., vol. 73, no. 22, pp. 3214–3216, Nov. 1998.
    [21] H. Kuraseko, N. Orita, H. Koaizawa, and M. Kondo, “Inverted Aluminum-Induced Layer Exchange Method for Thin Film Polycrystalline Silicon Solar Cells on Insulating Substrates,” Appl. Phys. Express, vol. 2, no. 1, p. 015501, Jan. 2009.
    [22] C. C. Peng, C. K. Chung, and J. F. Lin, “Effects of Al film thickness and annealing temperature on the aluminum-induced crystallization of amorphous silicon and carrier mobility,” Acta Mater., vol. 59, no. 15, pp. 6093–6102, Sep. 2011.
    [23] M. Hosssain, H. M. Meyer III, H. H. Abu-Safe, H. A. Naseem, and W. D. Brown, “The effect of hydrogen in the mechanism of aluminum-induced crystallization of sputtered amorphous silicon using scanning Auger microanalysis,” Thin Solid Films, vol. 510, no. 1–2, pp. 184–190, Jul. 2006.
    [24] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,” Chem. Rev., vol. 105, no. 4, pp. 1103–1170, Apr. 2005.
    [25] A. Ulman, “Formation and Structure of Self-Assembled Monolayers,” Chem. Rev., vol. 96, no. 4, pp. 1533–1554, Jan. 1996.
    [26] A. Rajca, “An Introduction To Ultrathin Organic Films: From Langmuirblodgett To Self-Assembly, By Abraham Ulman, Academic Press, London 1991, Xxiii, 442Pp., $65, ISBN 0-12-708230-1,” Adv. Mater., vol. 4, no. 4, pp. 309–309, Apr. 1992.
    [27] S. Khodabakhsh, B. M. Sanderson, J. Nelson, and T. S. Jones, “Using Self-Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells,” Adv. Funct. Mater., vol. 16, no. 1, pp. 95–100, Jan. 2006.
    [28] J. S. Kim, J. H. Park, J. H. Lee, J. Jo, D.-Y. Kim, and K. Cho, “Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics,” Appl. Phys. Lett., vol. 91, no. 11, p. 112111, Sep. 2007.
    [29] M. Stutzmann, D. K. Biegelsen, and R. A. Street, “Detailed investigation of doping in hydrogenated amorphous silicon and germanium,” Phys. Rev. B, vol. 35, no. 11, pp. 5666–5701, Apr. 1987.
    [30] M. H. Cohen, H. Fritzsche, and S. R. Ovshinsky, “Simple Band Model for Amorphous Semiconducting Alloys,” Phys. Rev. Lett., vol. 22, no. 20, pp. 1065–1068, May 1969.
    [31] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett., vol. 28, no. 11, pp. 671–673, Jun. 1976.
    [32] 高正雄, 超LSI時代: 電漿化學. 臺南市: 復漢, 88.
    [33] W. T. Y. Y. C. Lin, “Effect of Substrate Temperature on the Characterization of Molybdenum Contacts Deposited by DC Magnetron Sputtering,” Chin. J. Phys., vol. 50, no. 1, 2012.
    [34] R. A. Mickelsen and W. S. Chen, “High photocurrent polycrystalline thin‐film CdS/CuInSe2 solar cella,” Appl. Phys. Lett., vol. 36, no. 5, pp. 371–373, Mar. 1980.
    [35] M. Ohring, The materials science of thin films. Boston: Academic Press, 1992.
    [36] A. Anders, “A structure zone diagram including plasma-based deposition and ion etching,” Thin Solid Films, vol. 518, no. 15, pp. 4087–4090, May 2010.
    [37] M. Konuma, Plasma techniques for film deposition. Harrow: Alpha Science, 2005.
    [38] 施敏, 李明逵, and 曾俊元, 半導體元件物理與製作技術: 第三版, 初版. 新竹市: 國立交通大學出版社, 102AD.
    [39] “施敏,半導體元件物理與製作技術,第二版, 國立交通大學出版 社,1980.” .
    [40] 周安琪, 薄膜材料. 徐氏基金會.
    [41] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3 edition. Upper Saddle River, NJ: Prentice Hall, 2001.
    [42] J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics, 1995.
    [43] H.-Y. Kim, K.-Y. Lee, and J.-Y. Lee, “The influence of hydrogen dilution ratio on the crystallization of hydrogenated amorphous silicon films prepared by plasma-enhanced chemical vapor deposition,” Thin Solid Films, vol. 302, no. 1–2, pp. 17–24, Jun. 1997.
    [44] L. Cai, H. Wang, W. Brown, and M. Zou, “Large Grain Polycrystalline Silicon Film Produced by Nano-Aluminum-Enhanced Crystallization of Amorphous Silicon,” Electrochem. Solid-State Lett., vol. 8, no. 7, p. G179, 2005.
    [45] M. Kurosawa, N. Kawabata, T. Sadoh, and M. Miyao, “Orientation-controlled Si thin films on insulating substrates by Al-induced crystallization combined with interfacial-oxide layer modulation,” Appl. Phys. Lett., vol. 95, no. 13, p. 132103, 2009.
    [46] J. L. Lenhart and W. Wu, “Influence of Cross-Link Density on the Thermal Properties of Thin Polymer Network Films,” Langmuir, vol. 19, no. 11, pp. 4863–4865, May 2003.
    [47] H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K.-Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes,” Adv. Mater., vol. 20, no. 12, pp. 2376–2382, Jun. 2008.
    [48] J. Park and H. Lee, “Effect of surface functional groups on nanostructure fabrication using AFM lithography,” Mater. Sci. Eng. C, vol. 24, no. 1–2, pp. 311–314, Jan. 2004.
    [49] S. Flink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Functionalization of self-assembled monolayers on glass and oxidized silicon wafers by surface reactions,” J. Phys. Org. Chem., vol. 14, no. 7, pp. 407–415, Jul. 2001.
    [50] H. Sugimura, A. Hozumi, T. Kameyama, and O. Takai, “Organosilane self-assembled monolayers formed at the vapour/solid interface,” Surf. Interface Anal., vol. 34, no. 1, pp. 550–554, Aug. 2002.

    QR CODE