簡易檢索 / 詳目顯示

研究生: 楊立晨
Li-Chen Yang
論文名稱: 電致動力輔助化學機械平坦化製程應用於功能性晶圓平坦化之研究
Development of an Electrical Kinetic-Force Assisted Chemical Mechanical Planarization (EKF-CMP) for Functional Wafer Planarization
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 康來成
Lai-Cheng Kong
楊宏智
Hong-Tsu Young
丘群
Chun Chiu
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 165
中文關鍵詞: 三維堆疊積體電路中介層矽導孔電致動力輔助化學機械平坦化電滲流
外文關鍵詞: 3DS-IC, Interposer, TSV, EKF-CMP, Electro-osmosis Flow
相關次數: 點閱:314下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

三維堆疊積體電路(3DS-IC)被認為是一項突破摩爾定律關鍵技術,由矽導孔晶圓(TSV)及玻璃導孔晶圓(TGV)作為中介層(Interposer)材料進行三維異質元件堆疊,TGV所需使用的無鹼玻璃基板亦為生醫晶片不可或缺的材料。本研究針對此具有特定功能性的晶圓進行平坦化製程研究,利用外加偏壓能量於平坦化製程中,發展一電致動力輔助化學機械平坦化系統(EKF-CMP),透過外加偏壓於具有鑲嵌式電極拋光導電盤上產生電滲流,幫助拋光液中磨粒產生擾動,提高磨粒使用效率,並探討鑲嵌式電極間距以及拋光墊加工孔洞對於電滲流之影響,將分析結果製作專用導電盤。將銅膜晶圓以及兩款拋光液應用於EKF-CMP並比較傳統CMP,結果發現Slurry A之移除率提升36.6%,Slurry B之移除率提升64.7%。將TSV晶圓應用CMP及EKF-CMP製程後,結果發現經過EFK-CMP製程後有較快的材料移除速率,且孔洞在間距較大的MA.2區域中有較低的Dishing深度。玻璃基板於EKF-CMP製程也發現移除率提升約20%。本研究相關成果可驗證電致動力輔助化學機械平坦化製程之效益。


Three-dimensional stacking integrated circuit (3DS-IC) is considered to be a key technology to break through the limitations of Moore's law. The main technology is using the silicon or glass substrate with via which called through silicon via (TSV) and through glass via (TGV) to be interposer for stacking heterogeneous elements. The alkali glass of TGV is also an important material for biochip fabrication. This study develops an electrical kinetic-force assisted chemical mechanical planarization (EKF-CMP) for functional wafer by a designed damascene electrode on conductive plate to achieve micro area abrasive circulation of slurry. From simulation results, effect of electro-osmosis flow rate by different electrode gap can be used to design and fabricate the conductive plate for EKF-CMP. Experimental results shows that the MRR of copper blanket wafer with two kinds of slurry have been obtained by CMP and EKF-CMP tests that of material removal rate (MRR) by Slurry A can increase 36.6% and slurry B can increase 64.7% MRR of copper blanket wafer by EKF-CMP. As for the TSV pattern wafer after planarization by CMP and EKF-CMP, the MRR of EKF-CMP is faster than CMP and lower dishing in MA.2 region can be observed by EKF-CMP. For glass substrate, the MRR of glass substrate also increases 20% by EKF-CMP and the surface roughness Sa is maintained as 1.74 nm. Results of this study can verify the planarization efficiency by EKF-CMP for future application on TSV-CMP and TGV-CMP.

摘要 I Abstract II 誌謝 III 目錄 VI 圖目錄 XI 表目錄 XIX 符號表 XXI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 6 1.3 論文架構 8 第二章 文獻回顧 10 2.1 化學機械平坦化(CMP) 12 2.2 銅膜化學機械平坦化 (Copper CMP) 14 2.3 玻璃基板化學機械平坦化 (Glass CMP) 18 2.4 電化學機械平坦化 (ECMP) 24 2.5 矽導孔晶圓平坦化 (TSV-CMP) 33 2.6 拋光液 40 2.6.1 銅膜拋光液 40 2.6.2 玻璃基板拋光液 47 2.7 文獻回顧總結 52 2.8 導電電極設計相關專利分析 54 2.8.1 專利整理 54 2.8.2 專利分析及探討 61 第三章 電致動力原理介紹 62 3.1 電滲理論(Electro-osmosis Mechanism) 62 3.1.1 電雙層(Electric Double Layer) 63 3.1.2 電滲流(Electro-osmosis Flow) 64 3.2 拋光液電化學分析及腐蝕與抑制原理 67 3.2.1 動電位極化曲線與鈍化膜理論 67 3.2.2 塔佛曲線 70 3.2.3 拋光液腐蝕速率 71 3.3 化學機械平坦化製程材料移除機制與製程模型分析 72 3.3.1 CMP製程材料移除機制與製程模型 74 3.3.2 EKF-CMP製程材料移除機制與製程模型 78 第四章 EKF-CMP導電盤分析與設計 82 4.1 鑲嵌式電極(Damascene Electrode)系統電滲機制 82 4.2 二維模擬電極間距對電滲致動力影響 83 4.2.1 二維電極幾何模型建立 84 4.2.2 電極間距對電滲流影響模擬結果 84 4.3 三維模擬拋光墊孔洞形貌對電滲致動力影響 87 4.3.1 三維拋光墊孔洞幾何模型建立 88 4.3.2 拋光墊孔洞對電滲流影響模擬結果 89 4.4 EKF-CMP導電盤機構設計及組裝說明 91 第五章 實驗設備與規劃 95 5.1 實驗設備 95 5.1.1 EKF-CMP系統 95 5.1.2 拋光機台 96 5.1.3 恆電位儀 97 5.2 實驗耗材 98 5.2.1 拋光墊 98 5.2.2 拋光液 99 5.2.3 鑽石修整器 101 5.2.4 銅試片及銅膜晶圓 102 5.2.5 TSV圖案晶圓 104 5.2.6 玻璃基板 105 5.3 量測儀器 106 5.4 實驗規劃 106 5.4.1 銅膜晶圓EKF-CMP實驗 (實驗A) 107 5.4.2 TSV圖案晶圓EKF-CMP實驗 (實驗B) 108 5.4.3 玻璃基板EKF-CMP實驗 (實驗C) 109 第六章 結果與討論 110 6.1 銅膜晶圓EKF-CMP實驗(實驗A) 111 6.1.1 拋光液電化學分析及鈍化電壓探討 111 6.1.2 銅膜晶圓EKF-CMP及CMP製程比較 115 6.2 TSV圖案晶圓EKF-CMP實驗(實驗B) 126 6.3 玻璃基板EKF-CMP實驗(實驗C) 133 6.3.1 CMP製程參數探討 133 6.3.2 EKF-CMP製程外加偏壓參數探討 141 6.3.3 玻璃基板EKF-CMP製程與CMP製程比較 146 第七章 結論與建議 151 7.1 結論 151 7.2 建議 153 參考文獻 154 附錄A 實驗相關耗材 159 附錄B 量測儀器 161 作者簡介 164

[1] "Is this the End of Moore's Law", Marc to market, January 2nd, 2014.
[2] "Copper Pillar Flip Chip Momentum is Accelerating", ed. CSR Tech Monthly: CSR Tech Monthly.
[3] H. Xiao, "Introdution to semiconductor manufacturing technology"
, Pearson, 2002.
[4] J. H. Lau, "TSV Interposer: The Most Cost-Effective Integratorfor 3D IC Integration", InterPACK, 2011.
[5] 陸蘇財,"3D IC之C2C和C2W堆疊技術", IC產業智庫, 2010。
[6] F. W. Preston, "The theory and design of plate glass polishing machine", Journal of the society of glass technology, vol. 11, 1927.
[7] 土肥俊郎,"半導體平坦化CMP技術",2000。
[8] 張鼎張,鄭晃忠與楊正杰,"銅金屬化製程簡介", NDL奈米通訊,第五卷第三期,1998。
[9] H. Lee, B. Park, and H. Jeong, "Mechanical effect of process condition and abrasive concentration on material removal rate profile in copper chemical mechanical planarization", Journal of Materials Processing Technology, vol. 209, pp. 1729-1735, 2009.
[10] K. H. Wei, Y. S. Wang, C. P. Liu, K. W. Chen, Y. L. Wang, and Y. L. Cheng, "The influence of abrasive particle size in copper chemical mechanical planarization", Surface and Coatings Technology, vol. 231, pp. 543-545, 2013.
[11] Y. B. Tian, Z. W. Zhong, S. T. Lai, and Y. J. Ang, "Development of fixed abrasive chemical mechanical polishing process for glass disk substrates", The International Journal of Advanced Manufacturing Technology, vol. 68, pp. 993-1000, 2013.
[12] N. Belkhir, T. Aliouane, and D. Bouzid, "Correlation between contact surface and friction during the optical glass polishing", Applied Surface Science, vol. 288, pp. 208-214, 2014.
[13] S. Jeong, S. Lee, and H. Jeong, "Effect of polishing pad with holes in electro-chemical mechanical planarization", Microelectronic Engineering, vol. 85, pp. 2236-2242, 2008.
[14] Min-Hui Fang, "Research on abrasive free electrochemical mechanical polishing (AF-CMP) prcoess of copper film", Thesis of master degree, Department of mechnical engineering, National Taiwan University of Science and Technology, 2009.
[15] S. Tominaga, D. Abe, T. Enomoto, S. Kondo, H. Kitada, and T. Ohba, "Hybrid Electrochemical Mechanical Planarization Process for Cu Dual-Damascene Through-Silicon Via Using Noncontact Electrode Pad", Japanese Journal of Applied Physics, vol. 49, p. 05FG01, 2010.
[16] Chao-Chang A. Chen and Chi-Hsiang Hsieh, "Manufacturing Analysis of Hybrid Energy Manufacturing Processes and Application to Copper Chemical Mechanical Planarization Polishing Process", CIRP, 2011.
[17] Chi-Hsiang Hsieh, "Development of an electrical assisted chemical mechanical planarization (EACMP) for copper film planarization", Thesis of master degree, Department of mechnical engineering, National Taiwan University of Science and Technology, 2011.
[18] S. Joo and H. Liang, "Tribo-electrochemical characterization of copper thin films", Electrochimica Acta, vol. 99, pp. 133-137, 2013.
[19] J. V. Olmen, J. Coenen, W. Dehaene, K. D. Meyer, C. Huyghebaert, and A. Jourdain, "3D stacked IC demonstrator using hybrod collective die to wafer bonding with copper TSV", IEEE, pp. 1-5, 2009.
[20] D. Malta, C. Gregory, D. Temple, T. Knutson, C. Wang, and T. Richardson, "Integrated Process for Defect free Copper plating and CMp of TSV for 3D interconnec", IEEE, 2010.
[21] P. C. Lin, J. Xu, P. Li, Y. Ding, Z. Ma, and C. Xing, "TSV CMP Process Development and Pitting Defect Reduction", ICPT, Grenoble, France, 2012.
[22] J. C. Chen, J. H. Lau, P. J. Tzeng, S. C. Chen, C. Y. Wu, and C. C. Chen, "Effects of Slurry in Cu Chemical Mechanical", IEEE, 2012.
[23] H. Lee, S. Joo, and H. Jeong, "Mechanical effect of colloidal silica in copper chemical mechanical planarization", Journal of Materials Processing Technology, vol. 209, pp. 6134-6139, 2009.
[24] Chao-Chang A. Chen and Chi-Hsiang Hsieh,"Effect of inhibiter concentration on Cu CMP slurry analyzed by a Cu ECMP system", Electrochemical society, 2010.
[25] S. Joo and H. Liang, "In Situ Characterization of Triboelectrochemical Effects on Topography of Patterned Copper Surfaces", Journal of Electronic Materials, vol. 42, pp. 979-987, 2013.
[26] J. Li, Y. Liu, Y. Pan, and X. Lu, "Chemical roles on Cu-slurry interface during copper chemical mechanical planarization", Applied Surface Science, vol. 293, pp. 287-292, 2014.
[27] L. Wang, K. Zhang, Z. Song, and S. Feng, "Ceria concentration effect on chemical mechanical polishing of optical glass", Applied Surface Science, vol. 253, pp. 4951-4954, 2007.
[28] Z. Zhang, W. Liu, and Z. Song, "Effect of abrasive particle concentration on preliminary chemical mechanical polishing of glass substrate", Microelectronic Engineering, vol. 87, pp. 2168-2172, 2010.
[29] F. Rui, D. Kulkarni, and D. K. Watts, "Method and System for Pad Conditioning in an ECMP Process", R.O.C Patent, 2008.
[30] Y. Hu, S. D. Tsai, M. S. S/Wohlert, F. Q. Liu, and C. Liang-Yuh, "Conductive Pad with High Abrasion", R.O.C Patent 200632085, 2006.
[31] Ching-Zhi Ping, Yi-Peng Yao, Yong-Zhang Hong, and Jun-Da Wang, "Conductive Polishing Pad and Method for Making the Same", R.O.C Patent 201018545, 2010.
[32] S. Tominaga, S. Kondo, D. Abe, and S. Kunisaki, "Polishing Pad for Device Wafe", R.O.C Patent 200801253, 2008.
[33] Chao-Chang A. Chen, and Chi-Hsiang Hsieh, "電場輔助化學機械拋光系統及其方法", R.O.C Patent 201321129, 2013.

[34] Shi-Ren Li, and Yi-Huo Chen, "捲對捲式電化學機械拋光之研磨處理方法", R.O.C Patent 201340192, 2013.
[35] 胡啟章,"電化學原理與方法",五南圖書,2007。
[36] Chao-Chang A. Chen, "Handout of manufacturing analysis", NTUST, Department of mechanical engineering, 2013.
[37] M. T. Postek, D. E. Garcia, A. Silva, C. M. Ho, and J. A. Allgair, "Spatial redistribution of nano-particles using electrokinetic micro-focuser", vol. 6648, pp. 66480V-66480V-8, 2007.
[38] M. V. Smoluchowski, "Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen", Physik Z, pp. 756-780, 1906.

QR CODE