簡易檢索 / 詳目顯示

研究生: 曹建偉
Chien-Wei Tsao
論文名稱: III族元素修飾之奈米金自組裝陣列其電學性質之研究
Study on electrical properties of self-assembled Au nanoarrys decorated by group 3 elements
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 洪儒生
Lu-Sheng Hong
陳良益
Liang-Yih Chen
周賢鎧
Shyan-kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 矽/鍺晶片接合團聯式共聚物接合中介層金銦合金奈米陣列功函數
外文關鍵詞: Si/Ge wafer bonding, block copolymer, AuIn alloy nanoarray, intermediate layer, work function
相關次數: 點閱:185下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 太陽能電池介紹 4 2.1.1 光電轉換原理 4 2.1.2 矽晶太陽能電池 6 2.1.3 鍺晶太陽能電池 9 2.1.4 本研究提案的Si/Ge多重接面太陽能電池 10 2.2 晶圓接合技術 14 2.2.1 晶圓接合介紹 14 2.2.2 晶圓接合技術發展 15 2.2.3 晶圓接合機制 18 2.2.4 晶圓接合之變數 21 2.3 金半接觸與接面能障 27 2.4 p型鍺/n型矽接面合金中介層材料的選用與其功函數估算 32 2.5 團聯式共聚物自組裝金屬奈米粒子陣列技術 38 第三章 實驗方法與步驟 40 3.1 實驗藥品 40 3.2 實驗裝置 43 3.2.1 金屬蒸鍍裝置 43 3.2.2 高溫爐裝置 45 3.3 實驗程序 46 3.3.1矽晶片前處理 46 3.3.2合金奈米粒子陣列層的製備流程 48 3.4分析儀器 51 3.4.1 X射線光電子能譜化學分析儀 51 3.4.2 場發射掃描式電子顯微鏡 52 3.4.3 原子力顯微鏡 53 3.4.4 電性量測儀 55 第四章 結果與討論 56 4.1 鋁金合金奈米粒子陣列的製備 57 4.2 金銦合金奈米陣列接面層製備 60 4.2.1浸泡混合離子溶液對團聯式共聚物吸附之影響 60 4.2.2 以不同溶液混合比例還原後的合金奈米粒子層的表面形貌與等效功函數分析 71 4.3 以不同溶液混合比例還原後的合金奈米粒子層的電流電壓特性評估 81 第五章 結論 85 第六章 摻考文獻 86

    [1]. S. Jaewoo, P. H. Youl, K. D. Ho, K. J. Ok, J. S. Hyeon, P. Yongkook and P. J. Hong, “Electronic and Optoelectronic Devices based on Two-Dimensional Materials: From Fabrication to Application,” Advanced Electronic Materials, Vol. 3, Issue 4, 1600364, 2017.
    [2]. X. Jikai, D. Yu, T. Y. Hong and W. C. Xi, “Progress in wafer bonding technology towards MEMS, high-power electronics, optoelectronics, and optofluidics.” International Journal of Optomechatronics, Vol. 14, Issue 14, pages 94-118, 2020.
    [3]. B. Hekmatshoar, D. Shahrjerdi, M. Hopstaken, K. Fogel and D. K. Sadana, “High-efficiency heterojunction solar cells on crystalline germanium substrates,” Applied Physics Letters, Vol. 101, Issue 3, 032102, 2012.
    [4]. H. Mizuno, K. Makita and K. Matsubara, “Electrical and optical interconnection for mechanically stacked multi-junction solar cells mediated by metal nanoparticle arrays,” Applied Physics Letters, Vol.101, Issue 19, 191111, 2012.
    [5]. 李建澤, “以鈀奈米顆粒作為矽晶片粘合之接觸電阻評估,” 國立臺灣科技大學化學工程研究所碩士班碩士論文 臺北市, 2018
    [6]. J. Haisma and G. Spie, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: historical review in a broader scope and comparative outlook,” Materials Science and Engineering: R: Reports, Vol. 37, Issue 1-2, page 1-60, 2002.
    [7]. W. Storr, Basic Electronics tutorial site, 2013. Website
    [8]. D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics, Vol. 25, Issue 5, pages 676-677, 1954.
    [9]. J. F. Geisz, J. F. France, R. M. Schulte, K. L. Steiner, M. A. Norman, A. G. Guthrey, H. L. Young, M. R. Song, Tao and M. Thomas, “Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration,” Nature Energy, vol. 5, no. 4, pp. 326–335, 2020.
    [10]. W. Fuhs, K. Niemann and J. Stuke, “Heterojunctions of amorphous silicon and silicon single crystals,” In AIP Conference Proceedings, Vol. 20, No. 1, pp. 345-350, 1974.
    [11]. Y. Hamakawa, H. Okamoto and k. Okuda, U.S. Patent No. 4,496,788. Washington, DC: U.S. Patent and Trademark Office, 1985.
    [12]. V. A. Dao, S. Kim, Y. Lee, S. Kim, J. Park, S. Ahn and J. Yi, “High-Efficiency Heterojunction with Intrinsic Thin-Layer Solar Cells: A Review,” Current Photovoltaics Research, 1, 73-81, 2013.
    [13]. M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano and Y. Kuwano, “Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer). Japanese Journal of Applied Physics, Vol. 31, Issue 11R, 3518, 1992.
    [14]. D. S. Wolf, A. Descoeudres, Z. C.Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: A review,” green, Vol. 2, Issue 1, pages 7-24, 2012.
    [15]. M. Taguchi, Y. Tsunomura, H. Inoue, S. Taira, T. Nakashima, T. Baba and E. Maruyama, “High-efficiency HIT solar cell on thin (< 100 μm) silicon wafer.” the 24th European Photovoltaic Solar Energy Conference, pp. 1690-1693, 2009.
    [16]. T. Kaneko, and M. Kondo, “Post-annealing Effects on Characteristics of Crystalline Germanium Solar Cells with the Double Heterostructure,” Japanese Journal of Applied Physics, Vol. 52, Number 4S, 04CR04, 2013.
    [17]. S. Nakano, Y. Takeuchi, T. Kaneko, and M. Kondo, “Evaluation of the junction interface of the crystalline germanium heterojunction solar cells,” Japanese Journal of Applied Physics,Vol. 53, Number 4S, 04ER12, 2014.
    [18]. B. Hekmatshoar, D. Shahrjerdi, M. Hopstaken, K. Fogel, and D. K. Sadana, “High-efficiency heterojunction solar cells on crystalline germanium substrates,” Applied Physics Letters, Vol, 101, Issue 3, 032102, 2012.
    [19]. J. Hecht, “Photonic Frontiers: High-Efficiency Photovoltaics-Photovoltaics takes small steps on journey to greater efficiency,” Laser Focus World, Vol. 48, Issue 12, 50, 2012.
    [20]. T. Takamoto, H. Washio, and H. Juso, “Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic,” In Photovoltaic Specialist Conference (PVSC) IEEE, pp. 0001-0005, 2014.
    [21]. T. N. Tibbits, P. Beutel, M. Grave, C. Karcher, E. Oliva, G. Siefer and R. Krause, “New efficiency frontiers with wafer-bonded multi-junction solar cells,” the 29th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1-4, 2014.
    [22]. I. Mathews, D. O'Mahony, K. Thomas, E. Pelucchi, B. Corbett and A. P. Morrison, “Adhesive bonding for mechanically stacked solar cells,” Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 9, pages 1080-1090, 2015.
    [23]. P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hong and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE Journal of Photovoltaics, Vol. 4, Issue 1, pages 493-497, 2014.
    [24]. J. Yang, Z. Peng, D. Cheong and R. Kleiman, “Fabrication of high-efficiency III–V on silicon multijunction solar cells by direct metal interconnect,” IEEE Journal of Photovoltaics, Vol. 4, Issue 4, 1149-1155, 2014.
    [25]. X. Sheng, C. A. Bower, S. Bonafede, J. W. Wilson, B. Fisher, M. Meitl and C. J. Corcoran, “Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules,” Nature materials, Vol. 13, Issue 6, 593, 2014.
    [26]. http://www.solartr.org/SolarTR2_presentations%5CIvan%20Gordon.pdf
    [27]. U. Gösele and Q. Y. Tong, “Semiconductor wafer bonding,” Annual Review of Materials Science, Vol. 28, Issue 1, pages 215-241, 1998.
    [28]. M. Shimbo, K. Furukawa, K. Fukuda and K. Tanzawa, “Silicon‐to‐silicon direct bonding method,” Journal of Applied Physics, Vol. 60, Issue 8, pages 2987-2989, 1986.
    [29]. S. Bengtsson and O. Engström, “Electronic properties of silicon interfaces prepared by direct bonding,” Le Journal de Physique Colloques, Vol. 49, C4-63, 1988.
    [30]. S. Kal MEMS & Microsystems Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture 30 Wafer Bonding & Packaging of MEMS.
    [31]. G. Wallis and D. I. Pomerantz, “Field assisted glass‐metal sealing,” Journal of applied physics, Vol. 40, Issue 10, pages 3946-3949, 1969.
    [32]. A. Yamada, T. Kawasaki and M. Kawashima, “SOI by wafer bonding with spin-on glass as adhesive,” Electronics Letters, Vol. 23, Issue 1, pages 39-40, 1987.
    [33]. J. K. Bhagat and D. B. Hicks, “Bonding of silicon to silicon by solid‐phase epitaxy,” Journal of applied physics, Vol. 61, Issue 8, 3118-3120, 1987.
    [34]. T. M. Lee, D. H. Lee, C. Y. Liaw, A. I. Lao and I. M. Hsing, “Detailed characterization of anodic bonding process between glass and thin-film coated silicon substrates,” Sensors and Actuators A: Physical, Vol. 86, Issue 1-2, pages 103-107, 2000.
    [35]. Q. Y. Tong and U. Goesele, “Semiconductor wafer bonding: science and technology,” 1999.
    [36]. W. P. Maszara, B. L. Jiang, A. Yamada, G. A. Rozgonyi, H. Baumgart and A. J. R. de Kock, “Role of surface morphology in wafer bonding,” Journal of applied physics, Vol. 69, Issue 1, pages 257-260, 1991.
    [37]. 林敬富, & 吳耀銓, “P 型鍺與 N 型矽晶圓接合介面型態與電性研究 (Doctoral dissertation),” 2013.
    [38]. A. Plößl and G. Kräuter, “Wafer direct bonding: tailoring adhesion between brittle materials,” Materials Science and Engineering: R: Reports, Vol. 25, Issue 1-2, pages 1-88, 1999.
    [39]. Q. Y. Tong, E. Schmidt, U. Gösele and M. Reiche, “Hydrophobic silicon wafer bonding,” Applied physics letters, Vol. 64, Issue 5, pages 625-627, 1994.
    [40]. Y. H. Cho, S. E. Kim and S. Kim, “Wafer Level Bonding Technology for 3D Stacked IC,” Journal of the Microelectronics and Packaging Society, Vol. 20, Issue 1, pages 7-13, 2013.
    [41]. S. Bushra, “Investigation of Wafer Level Au-Si Eutectic Bonding of Shape Memory Alloy (SMA) with Silicon,” 2011.
    [42]. J. Haisma G. A. C. M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: historical review in a broader scope and comparative outlook,” Materials Science and Engineering: R: Reports, Vol. 37, Issue 1-2, pages 1-60, 2002.
    [43]. S. M. Sze and K. N. Kwok, “Physics of Semiconductor Devices Third Edition Chapter 3 Metal-Semiconductor Contacts,” pages 134-196, 2007.
    [44]. R. D. Maldonado and A. I. Oliva, “Annealing effects on the electrical resistivity of AuAl thin films alloys,” Materials Chemistry and Physics, Vol. 116, Issue 2-3,453-457, 2009.
    [45]. H. Piao, M. Suominen Fuller, D. Miller and N. S. McIntyre, “A study of thin film Au-Al alloy oxidation in ambient air by X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES), and secondary ion mass spectrometry (SIMS),” Applied Surface Science, Vol. 187, Issue 3-4, 266-274, 2002.
    [46]. R. W. Olesinki, N. Kanani and G. J. Abbaschian, “Bulletin of Alloy Phase Diagrams,” Vol. 6, Issue 6, p.536-539, 1985.
    [47]. R. W. Olesinki, N. Kanani and G. J. Abbaschian, “Bulletin of Alloy Phase Diagrams,” Vol. 6, Issue 2, p.128-130, 1985.
    [48]. B. Y. Tsui and C. F. Huang, “Wide range work function modulation of binary alloys for MOSFET application,” IEEE Electron Device Letters, Vol. 24, Issue 3, 153-155, 2003.
    [49]. Aizawa, Masato, Buriak, M. Julian, “Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces,” Chemistry of Materials, Vol. 19, Issue 21, 5090-5101, 2007.
    [50]. H. Mizuno, K. Makita, T. Tayagaki, T. Mochizuki, T. Sugaya and H. Takato, “High-efficiency III-V//Si tandem solar cells enabled by the Pd nanoparticle array-mediated "smart stack" approach,” Applied Physics Express, Vol. 10, Issue 7, 2017.
    [51]. H. Mizuno, K. Makita, T. Mochizuki, T. Tayagaki, T. Sugaya and H. Takato, “Cu nanoparticle array-mediated iii-v/si integration: Application in series-connected tandem solar cells,” ACS Appl. Energy Mater., Vol. 3, Issue 4, P3445-3453, 2020.
    [52]. Y. Li, C. Li, B. B. Prasad, J. Tang, B. Jiang, J. Kim, M. Shahabuddin, Y. Bando, J. H. Kim and Y. Yamauchi, “Strategic synthesis of mesoporous Pt-on-Pd bimetallic spheres templated from a polymeric micelle assembly,” Journal of Materials Chemistry A, Vol. 4, Issue 23 9169-9176, 2016.
    [53]. T. O. Lekesiz, K. Kaleli, T. Uyar, C. Kayran and J. Hacaloglu, “Preparation and characterization of polystyrene-b-poly(2-vinylpyridine) coordinated to metal or metal ion nanoparticles,” J. Anal. Appl. Pyrolysis, vol. 106, pages 81–85, 2014.
    [54]. 野中翔一郎, 古川昭雄, & 牧田紀久夫, スマートスタック技術による多接合太陽電池の接合界面評価 (電子部品・材料). 電子情報通信学会技術研究報告= IEICE technical report: 信学技報, Vol. 115, Issue 330, pages 101-104, 2015.
    [55]. S. E. R. Hiscocks and W. H. Rothery, “Proceedings of the Royal Society of London,” Series A. Mathematical and Physical Sciences, Vol. 282, Issue 1390, pp. 318-330, 1964.

    QR CODE