簡易檢索 / 詳目顯示

研究生: 劉芳廷
Fang-Ting Liu
論文名稱: 使用凹槽型奈米圖案藍寶石基板成長石墨烯薄膜之研究
Growth of graphene thin film on the concave nanopattern sapphire substrate
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 郭東昊
Dong-Hau Kuo
黃柏仁
Bohr-Ran Huang
陳衛國
Wei-Kuo Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 96
中文關鍵詞: 凹槽型奈米級圖案藍寶石基板石墨烯介面層氮化鎵
外文關鍵詞: Nano-patterned sapphire substrate, graphene interlayer, GaN
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氮化鎵具備優異的電性表現已成為第三代寬能隙半導體熱門材料,由AlGaN/GaN異質結構形成之高電子遷移率電晶體已廣泛運用在手機快充與電動車電控系統。本實驗將針對氮化鎵成長在藍寶石基板上,面臨的兩大瓶頸-藍寶石基板導熱係數差導致廢熱堆積及晶格不匹配所引起的差排缺陷問題提出可行解決方法。首先,為了解決散熱問題,提出將元件與藍寶石基板進行分離轉移技術,嘗試利用石墨烯的凡得瓦爾力及凹槽型奈米級圖案藍寶石基板的低接觸面積,進行基板分離。在凹槽型奈米級圖案藍寶石基板製作上,我們透過調整陽極處理參數可製備出孔洞占比面積33.0~59.5%的陽極氧化鋁遮罩,並使用ICP-RIE轉移孔洞圖案製備27.5~45.6 %孔洞佔比的凹槽型奈米級圖案藍寶石基板。另一方面,藉由石墨烯作為緩衝層來降低氮化鎵差排缺陷密度;石墨烯以銅膜作為催化劑,通入氫氣與甲烷,在凹槽型奈米級圖案藍寶石基板的凹槽孔洞表面上可成長ID/IG = 0.4~0.5,層數約為3~5層左右之石墨烯。本研究最後在石墨烯/凹槽型奈米級圖案藍寶石基板進行氮化鎵高電子遷移率電晶體元件結構磊晶,由掃描式電子顯微鏡影像分析指出無法連續成膜,推測原因為磊晶時的高溫導致石墨烯裂解,影響了層狀氮化鎵成長。


Gallium nitride (GaN) is a promising material for development of the third-generation wide-bandgap semiconductor. Recently, the high-power semiconductor device using GaN high electron mobility transistors (HEMTs) already applied in the fast charger of mobile phone and electric power control unit of electric vehicle. In general, GaN thin films grown on sapphire substrates suffer from several bottlenecks, such as high threading dislocations (TDs) density and waste heat accumulation. In this study, a novelty substrate which prepared a graphene interlayer on a cave nanopatterned sapphire substrate (NPSS) is proposed in order to improve TDs density and waste heat accumulation of GaN based semiconductor devices. The concave NPSS is fabricated using an anodic aluminum oxide (AAO) mask with various pattern diameters and pattern densities. The dry etching process is used for pattern transfer on sapphire substrate to create various c-plane area (i.e. without concave pattern region), ranging from 28 – 46%. In addition, the copper thin films as metal catalyst is used for growth of graphene interlayer on concave NPSS. The Raman spectrum shows the peak intensity of D-band/G-band is 0.4-0.5 and full-width at half maximum of 2D-band is 50-60
cm-1 which indicated multi-layer graphene is prepared on concave NPSS. Finally, the GaN based HEMTs is grown on graphene interlayer/concave NPSS using a metal organic chemical vapor deposition system. However, the images of scanning electron microscope showed that the surface morphology of GaN HEMTs is dominated by island structure. It is believed that the sputtering aluminum nitride buffer layer is necessary grown on graphene interlayer/concave NPSS for prevention of graphene dissociation during GaN HEMTs epitaxy.

摘要 I Abstract II 致謝 III 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 凹槽型奈米圖案藍寶石基板之文獻探討 4 2.1.1 奈米圖案藍寶石基板之介紹及發展應用 4 2.1.2 奈米圖案藍寶石基板與藍寶石基板之比較 5 2.1.3 奈米圖案藍寶石基板基板之製備技術 10 2.1.4 不同深寬比之奈米圖案藍寶石基板比較 13 2.2 石墨烯之文獻探討 15 2.2.1 石墨烯之介紹與發展應用 15 2.2.2 化學氣相沉積法製備石墨烯 17 2.2.3 石墨烯之拉曼分析量測 22 2.3 氮化鎵之文獻探討 24 2.3.1 氮化鎵之介紹與應用 24 2.3.2 氮化鎵之分析方法 26 2.3.3 高電子遷移率電晶體 29 2.4 基板分離技術之文獻探討 31 第三章 實驗方法 35 3.1 實驗流程 35 3.1.1 凹槽型奈米圖案藍寶石基板製備方法 36 3.1.2 石墨烯製備方法 36 3.2 實驗設備 36 3.2.1 陽極氧化鋁系統 36 3.2.2 感應耦合電漿活性離子蝕刻 37 3.2.3 熱蒸鍍系統 37 3.2.4 低壓化學氣相沉積系統 38 3.2.5 過硫酸銨溶液 39 3.3 實驗分析方法 39 3.3.1 顯微拉曼光譜儀 39 3.3.2 場發射掃描式電子顯微鏡 40 第四章 結果與討論 41 4.1 凹槽型奈米圖案藍寶石基板之製備 41 4.1.1 不同沉積方式對陽極氧化鋁之影響 42 4.1.2 不同電壓對陽極氧化鋁之影響 45 4.1.3 不同二次擴孔時間對陽極氧化鋁之影響 47 4.1.4 不同蝕刻時間的感應耦合電漿對奈米圖案藍寶石基板的影響 49 4.1.5 不同遮罩對感應耦合電漿製備奈米圖案藍寶石基板之影響 52 4.2 製備石墨烯於平坦的藍寶石基板 55 4.2.1 銅膜厚度對爐內升溫成長石墨烯之影響 55 4.2.2 等待時間對爐內升溫成長石墨烯之影響 57 4.2.3 成長溫度對爐內升溫成長石墨烯之影響 59 4.2.4 氫甲烷不同流量對爐內升溫成長石墨烯之影響 60 4.3 氮化鎵磊晶於石墨烯/奈米圖案藍寶石基板 62 4.3.1 不同孔洞面積之奈米圖案藍寶石基板成長石墨烯 62 4.3.2 奈米圖案藍寶石基板與藍寶石基板上成長石墨烯之比較 67 4.3.3 氮化鎵/石墨烯/奈米圖案藍寶石基板之磊晶結果分析 69 第五章 結論 73 參考文獻 75

1 http://www.yole.fr/.
2 L.-H. Hsu, Y.-Y. Lai, P.-T. Tu, C. Langpoklakpam, Y.-T. Chang, Y.-W. Huang, W.-C. Lee, A.-J. Tzou, Y.-J. Cheng, and C.-H. Lin, Development of GaN HEMTs fabricated on silicon, silicon-on-insulator, and engineered substrates and the heterogeneous integration, Micromachines.(2021). 12, p.1159.
3 S. W. Finefrock, Y. Wang, J. B. Ferguson, J. V. Ward, H. Fang, J. E. Pfluger, D. S. Dudis, X. Ruan, and Y. Wu, Measurement of thermal conductivity of pbte nanocrystal coated glass fibers by the 3ω method, Nano Lett.(2013). 13, p.5006.
4 L. Liu and J. H. Edgar, Substrates for gallium nitride epitaxy, Materials Science and Engineering: R: Reports.(2002). 37, p.61.
5 W.-J. Jung, The Growth of Nonpolar GaN on Different Buffer Layers by Metalorganic Chemical Vapor Deposition, National Chiao Tung University (2010).
6 N. Kaminski and O. Hilt, SiC and GaN devices–wide bandgap is not all the same, IET Circuits, Devices & Systems.(2014). 8, p.227.
7 Y. H. Sung, J. Park, E.-S. Choi, H. C. Lee, and H. Lee, Improved Light Extraction Efficiency of GaN Based Blue Light Emitting Diode Using Nano-Scaled Patterned Sapphire Substrate, J. Nanoelectron. Optoelectron.(2019). 14, p.1655.
8 J.-Y. Cho, J.-S. Kim, Y.-D. Kim, H. J. Cha, and H. Lee, Fabrication of oxide-based nano-patterned sapphire substrate to improve the efficiency of GaN-based of LED, Jpn. J. Appl. Phys.(2015). 54, p.02BA04.
9 Y.-K. Ee, X.-H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire, J. Cryst. Growth.(2010). 312, p.1311.
10 T.-Y. Wang, C.-T. Tasi, K.-Y. Lin, S.-L. Ou, R.-H. Horng, and D.-S. Wuu, Surface evolution and effect of V/III ratio modulation on etch-pit-density improvement of thin AlN templates on nano-patterned sapphire substrates by metalorganic chemical vapor deposition, Appl. Surf. Sci.(2018). 455, p.1123.
11 B. Tang, H. Hu, H. Wan, J. Zhao, L. Gong, Y. Lei, Q. Zhao, and S. Zhou, Growth of high-quality AlN films on sapphire substrate by introducing voids through growth-mode modification, Appl. Surf. Sci.(2020). 518, p.146218.
12 Y. Qi, Y. Wang, Z. Pang, Z. Dou, T. Wei, P. Gao, S. Zhang, X. Xu, Z. Chang, and B. Deng, Fast growth of strain-free AlN on graphene-buffered sapphire, Journal of the American Chemical Society.(2018). 140, p.11935.
13 M. Conroy, V. Z. Zubialevich, H. Li, N. Petkov, J. D. Holmes, and P. J. Parbrook, Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods, J. Mater. Chem. C.(2015). 3, p.431.
14 C.-T. Tasi, W.-K. Wang, T.-Y. Tsai, S.-Y. Huang, R.-H. Horng, and D.-S. Wuu, Reduction of defects in AlGaN grown on nanoscale-patterned sapphire substrates by hydride vapor phase epitaxy, Materials.(2017). 10, p.605.
15 F.-W. Lee, W.-C. Ke, C.-H. Cheng, B.-W. Liao, and W.-K. Chen, Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates, Appl. Surf. Sci.(2016). 375, p.223.
16 N. Xie, F. Xu, N. Zhang, J. Lang, J. Wang, M. Wang, Y. Sun, B. Liu, W. Ge, and Z. Qin, Period size effect induced crystalline quality improvement of AlN on a nano-patterned sapphire substrate, Jpn. J. Appl. Phys.(2019). 58, p.100912.
17 D. Lee, S. Lee, G. Kim, J. Kim, J. Jang, J. Oh, D. Moon, Y. Park, and E. Yoon, Epitaxial lateral overgrowth of GaN on nano-cavity patterned sapphire substrates, J. Cryst. Growth.(2019). 507, p.103.
18 K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-E. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, science.(2004). 306, p.666.
19 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, nature.(2005). 438, p.197.
20 X. Li, J. Yu, S. Wageh, A. A. Al‐Ghamdi, and J. Xie, Graphene in photocatalysis: a review, Small.(2016). 12, p.6640.
21 K. S. Novoselov, L. Colombo, P. Gellert, M. Schwab, and K. Kim, A roadmap for graphene, nature.(2012). 490, p.192.
22 P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, and E. W. Hill, Graphene-based liquid crystal device, Nano Lett.(2008). 8, p.1704.
23 B. Liu, Q. Chen, Z. Chen, S. Yang, J. Shan, Z. Liu, Y. Yin, F. Ren, S. Zhang, and R. Wang, Atomic Mechanism of Strain Alleviation and Dislocation Reduction in Highly Mismatched Remote Heteroepitaxy Using a Graphene Interlayer, Nano Lett.(2022). 22, p.3364.
24 K. Saito and T. Ogino, Direct growth of graphene films on sapphire (0001) and (1120) surfaces by self-catalytic chemical vapor deposition, The Journal of Physical Chemistry C.(2014). 118, p.5523.
25 G. Nandamuri, S. Roumimov, and R. Solanki, Chemical vapor deposition of graphene films, Nanotechnology.(2010). 21, p.145604.
26 R. Munoz and C. Gómez‐Aleixandre, Review of CVD synthesis of graphene, Chem. Vap. Deposition.(2013). 19, p.297.
27 M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure, Physical Chemistry Chemical Physics.(2011). 13, p.20836.
28 J.-B. Wang, Z. Ren, Y. Hou, X.-L. Yan, P.-Z. Liu, H. Zhang, H.-X. Zhang, and J.-J. Guo, A review of graphene synthesisatlow temperatures by CVD methods, New Carbon Mater.(2020). 35, p.193.
29 P. Lenz-Solomun, M.-C. Wu, and D. W. Goodman, Methane coupling at low temperatures on Ru (0001) and Ru (11 20) catalysts, Catal. Lett.(1994). 25, p.75.
30 Y. Zhang, L. Zhang, and C. Zhou, Review of chemical vapor deposition of graphene and related applications, Acc. Chem. Res.(2013). 46, p.2329.
31 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils, science.(2009). 324, p.1312.
32 C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, and F.-R. Chen, Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition, Nano Lett.(2011). 11, p.3612.
33 G. Kaur, K. Kavitha, and I. Lahiri, Transfer-Free Graphene Growth on Dielectric Substrates: A Review of the Growth Mechanism, Crit. Rev. Solid State Mater. Sci.(2018). 44, p.157.
34 A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, and Y. Zhang, Direct chemical vapor deposition of graphene on dielectric surfaces, Nano Lett.(2010). 10, p.1542.
35 Y. Zeng, J. Ning, J. Zhang, Y. Jia, C. Yan, B. Wang, and D. Wang, Raman analysis of E2 (high) and A1 (LO) phonon to the stress-free GaN grown on sputtered AlN/graphene buffer layer, Applied Sciences.(2020). 10, p.8814.
36 I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, The effect of substrates on the Raman spectrum of graphene: Graphene-on-sapphire and graphene-on-glass, Appl. Phys. Lett.(2007). 91, p.201904.
37 G. Heo, Y. S. Kim, S.-H. Chun, and M.-J. Seong, Polarized Raman spectroscopy with differing angles of laser incidence on single-layer graphene, Nanoscale Res. Lett.(2015). 10, p.1.
38 Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, and H. Yang, Controllable growth of 1–7 layers of graphene by chemical vapour deposition, Carbon.(2014). 73, p.252.
39 Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. Thong, Probing layer number and stacking order of few‐layer graphene by Raman spectroscopy, small.(2010). 6, p.195.
40 X. She, A. Q. Huang, O. Lucia, and B. Ozpineci, Review of silicon carbide power devices and their applications, IEEE Trans. Ind. Electron.(2017). 64, p.8193.
41 Y. Zhang, C. Liu, M. Zhu, Y. Zhang, and X. Zou, A review on GaN-based two-terminal devices grown on Si substrates, J. Alloys Compd.(2021). 869, p.159214.
42 Z. Su, R. Kong, X. Hu, Y. Song, Z. Deng, Y. Jiang, Y. Li, and H. Chen, Effect of initial condition on the quality of GaN film and AlGaN/GaN heterojunction grown on flat sapphire substrate with ex-situ sputtered AlN by MOCVD, Vacuum.(2022). 201, p.111063.
43 F. Wang, C. Cheng, Y. Chen, C. Huang, and C. Yang, Residual thermal strain in thick GaN epifilms revealed by cross-sectional Raman scattering and cathodoluminescence spectra, Semicond. Sci. Technol.(2007). 22, p.896.
44 L. Shang, T. Lu, G. Zhai, Z. Jia, H. Zhang, S. Ma, T. Li, J. Liang, X. Liu, and B. Xu, The evolution of a GaN/sapphire interface with different nucleation layer thickness during two-step growth and its influence on the bulk GaN crystal quality, RSC Adv.(2015). 5, p.51201.
45 Y. Li, G. Meng, L. Zhang, and F. Phillipp, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties, Appl. Phys. Lett.(2000). 76, p.2011.
46 C. He, W. Zhao, K. Zhang, L. He, H. Wu, N. Liu, S. Zhang, X. Liu, and Z. Chen, High-quality GaN epilayers achieved by facet-controlled epitaxial lateral overgrowth on sputtered AlN/PSS templates, ACS Appl. Mater. Interfaces.(2017). 9, p.43386.
47 Y. Chen, Z. Chen, J. Li, Y. Chen, C. Li, J. Zhan, T. Yu, X. Kang, F. Jiao, and S. Li, A study of GaN nucleation and coalescence in the initial growth stages on nanoscale patterned sapphire substrates via MOCVD, CrystEngComm.(2018). 20, p.6811.
48 S.-W. Chen, H. Li, and T.-C. Lu, Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers, AIP Adv.(2016). 6, p.045311.
49 H.-Y. Kim, J. A. Freitas, and J. Kim, Penetration effects of high-energy protons in GaN: a micro-Raman spectroscopy study, Electrochem. Solid-State Lett.(2010). 14, p.H5.
50 M. S. Liu, L. A. Bursill, S. Prawer, K. Nugent, Y. Tong, and G. Zhang, Temperature dependence of Raman scattering in single crystal GaN films, Appl. Phys. Lett.(1999). 74, p.3125.
51 A. H. Park, T. H. Seo, S. Chandramohan, G. H. Lee, K. H. Min, S. Lee, M. J. Kim, Y. G. Hwang, and E.-K. Suh, Efficient stress-relaxation in InGaN/GaN light-emitting diodes using carbon nanotubes, Nanoscale.(2015). 7, p.15099.
52 U. K. Mishra, P. Parikh, and Y.-F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE.(2002). 90, p.1022.
53 Donald A. Neamen,半導體物理與元件. (2018).
54 H. S. Wasisto, J. D. Prades, J. Gülink, and A. Waag, Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs, Appl. Phys. Rev.(2019). 6,
55 W. Wong, T. Sands, and N. Cheung, Damage-free separation of GaN thin films from sapphire substrates, Appl. Phys. Lett.(1998). 72, p.599.
56 D. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, and T. Monteiro, Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN, Appl. Phys. Lett.(2007). 91, p.071120.
57 D. Francis, F. Faili, D. Babić, F. Ejeckam, A. Nurmikko, and H. Maris, Formation and characterization of 4-inch GaN-on-diamond substrates, Diamond Relat. Mater.(2010). 19, p.229.
58 X. Yang, Z. Chen, D. Cao, C. Zhao, L. Shen, C. Luan, Z. Pang, J. Liu, J. Ma, and H. Xiao, Large-area, liftoff nanoporous GaN distributed Bragg reflectors: Fabrication and application, Appl. Surf. Sci.(2019). 489, p.849.
59 P. Gupta, A. Rahman, N. Hatui, J. B. Parmar, B. A. Chalke, R. D. Bapat, S. Purandare, M. M. Deshmukh, and A. Bhattacharya, Free-standing semipolar III-nitride quantum well structures grown on chemical vapor deposited graphene layers, Appl. Phys. Lett.(2013). 103, p.181108.
60 J. Jiang, J. Dong, B. Wang, C. He, W. Zhao, Z. Chen, K. Zhang, and X. Wang, Epitaxtial lift-off for freestanding InGaN/GaN membranes and vertical blue light-emitting-diodes, J. Mater. Chem. C.(2020). 8, p.8284.
61 J. Kim, C. Bayram, H. Park, C.-W. Cheng, C. Dimitrakopoulos, J. A. Ott, K. B. Reuter, S. W. Bedell, and D. K. Sadana, Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene, Nat. Commun.(2014). 5, p.1.
62 W.-C. Ke, F.-W. Lee, C.-Y. Chiang, Z.-Y. Liang, W.-K. Chen, and T.-Y. Seong, InGaN-based light-emitting diodes grown on a micro/nanoscale hybrid patterned sapphire substrate, ACS Appl. Mater. Interfaces.(2016). 8, p.34520.
63 W.-C. Ke, Z.-Y. Liang, S. T. Tesfay, C.-Y. Chiang, C.-Y. Yang, K.-J. Chang, and J.-C. Lin, Epitaxial growth and characterization of GaN thin films on graphene/sapphire substrate by embedding a hybrid-AlN buffer layer, Appl. Surf. Sci.(2019). 494, p.644.

無法下載圖示 全文公開日期 2025/08/01 (校內網路)
全文公開日期 2025/08/01 (校外網路)
全文公開日期 2025/08/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE