簡易檢索 / 詳目顯示

研究生: 倪廷甫
Ting-Fu Ni
論文名稱: 四階飛馳電容式功率因數修正器
4-level Flying Capacitor Power Factor Corrector
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 劉宇晨
Yu-Chen Liu
張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 110
中文關鍵詞: 高功率密度高效率氮化鎵功率開關四階飛馳電容式功率因數修正器
外文關鍵詞: Multilevel flying capacitor boost, Average current control, Duty ratio feedforward, GaN device
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功率因數修正器被廣泛使用在電源轉換器中,用以改善交流電源端功率因數的電路,為了提升功率密度與轉換效率,本文採用四階飛馳電容式功率因數修正器搭配相移調變技術(Phase Shift Pulse Width Modulation, PSPWM),能使箝位電容達到電壓平衡,並增加電感的等效頻率。在額定的電流漣波下,能使用小感值的電感,降低電感體積。由於開關元件跨壓減少,因此有較低的切換損,而電路會使用電容做為電壓箝位。綜上所述,四階飛馳電容式功率因數修正器能達到高效率和高功率密度。本文基於使用PSPWM時,探討連續導通模式下之輸入電壓對輸出電壓的轉移函數和小訊號模型,並以小訊號模型設計補償器。本論文將推導四階飛馳電容式功率因數修正器的責任週期前饋控制,以此控制法降低電感電流之諧波失真,並能用以控制同步整流開關,降低電感逆電流。本論文亦將說明單相四階飛馳電容式功率因數修正器動作原理,並且推導小訊號模型、設計補償器,最後使用數位晶片達成整體功率因數之功能。最終本論文實現電感電流等效頻率為500 kHz、輸入電壓為90~264 Vrms、輸出電壓390 V、輸出功率350 W的四階飛馳電容式功率因數修正器。


    Power factor correction (PFC) is widely used in adapter or front-end circuits of appliances. A 4-level flying capacitor boost PFC with Phase-Shifted Pulse Width Modulation (PSPWM) technology can be used to balance the voltage of the flying capacitors. In addition, the in-ductor equivalent frequency is increased and the voltage stress of the inductor is decreased. Therefore, low inductance can be used. Because the voltage stress of the switches is decreased, the switches with low voltage ratings can be used, even with parasitic components. Ceramic capacitors with high power density are used because the capacitance requirement of the flying capacitor is low. In conclusion, a 4-level flying capacitor boost PFC can achieve high efficiency and high-power density. This article discussed the DC gain and small-signal model of the flying capacitor multilevel (FCML) boost converter with PSPWM in continuous con-duction mode. The duty ratio feedforward is often used in the PFC with a 2-level topology to reduce the current distortion. However, the DCM duty ratio of the FCML boost converter is different from the 2-level boost converter. This thesis will derive the DCM duty cycle of the 4-level flying capacitor boost PFC, and use it to control the synchronous switch to reduce the reverse inductor current. This thesis also introduces the operation principle of the 4-level flying capacitor boost PFC and the pro-gram’s flow chart. Finally, the 350 W 4-level flying capacitor boost PFC with duty ratio feedforward control is implemented with an inductor current frequency of 500 kHz, an input voltage of 90-264 Vrms, and an output voltage of 390 V.

    摘要 Abstract 致謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 章節大綱 第二章 功率因數修正器電路架構 2.1 傳統橋式二階升壓型功率因數修正器架構分析 2.2 圖騰柱功率因數修正器電路架構分析 2.3 多階飛馳電容升壓型功率因數修正器電路架構分析 第三章 四階飛馳電容式功率因數修正器分析 3.1 電路架構介紹 3.2 電路狀態與穩態動作模式分析 3.2.1 責任週期D小於33.3% 3.2.2 責任週期D介於33.3%至66.7%之間 3.2.3 責任週期D大於66.7% 3.3 小訊號分析 3.4 PI控制器設計 3.5 責任週期前饋控制 第四章 電路功率元件設計與實現 4.1 平板式電感設計 4.1.1 電感鐵芯設計與分析 4.1.2 電感鐵芯損耗 4.1.3 繞組設計 4.1.4 平板式電感損耗最佳點 4.2 電容設計 4.2.1 飛馳電容設計 4.2.2 輸出電容設計 4.3 開關設計 4.4 韌體規劃 4.4.1 CPU中斷副程式流程規劃 4.4.2 CLA中斷副程式流程規劃 4.4.3 程式執行時間 第五章 電路模擬及實驗驗證 5.1 電路模擬波形 5.2 實驗量測波形 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] G. Bekaroo and A. Santokhee, “Power consumption of the Rasp-berry Pi: A comparative analysis,” 2016 IEEE International Con-ference on Emerging Technologies and Innovative Business Prac-tices for the Transformation of Societies (EmergiTech), 2016, pp. 361-366, doi: 10.1109/EmergiTech.2016.7737367.
    [2] J. R. Loy, J. D. Myers and C. C. Tappert, “Notebook versus desktop computers for cadets at West Point,” in IEEE Transactions on Education, vol. 39, no. 4, pp. 497-504, Nov. 1996, doi: 10.1109/13.544803.
    [3] L. Xue and J. Zhang, “Active clamp flyback using GaN power IC for power adapter applications,” 2017 IEEE Applied Power Elec-tronics Conference and Exposition (APEC), 2017, pp. 2441-2448, doi: 10.1109/APEC.2017.7931041.
    [4] S. Tang, J. Xi and L. He, “A GaN-based MHz active clamp flyback converter with adaptive dual edge dead time modulation for AC-DC adapters,” IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 546-553, doi: 10.1109/IECON.2017.8216096.
    [5] IEC 61000-3-2, Electromagnetic compatibility (EMC) − Electro-magnetic compatibility (EMC) − Part 2-2: Environment − Com-patibility levels for low-frequency conducted disturbances and signaling in public low-voltage power supply systems.
    [6] C. K. Duffey and R. P. Stratford, “Update of harmonic standard IEEE-519: IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems,” Record of Con-ference Papers., Industrial Applications Society 35th Annual Pe-troleum and Chemical Industry Conference,, 1988, pp. 249-255, doi: 10.1109/PCICON.1988.22445.
    [7] Z. Liu, F. C. Lee, Q. Li, and Y. Yang, “Design of GaN MHz to-tem-pole PFC rectifier,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, Sept. 2016, pp. 799-807.
    [8] Q. Huang, R. Yu, A. Q. Huang and W. Yu, “Adaptive ze-ro-voltage-switching control and hybrid current control for high efficiency GaN-based MHz Totem-pole PFC rectifier, “ 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 1763-1770, doi: 10.1109/APEC.2017.7930937.
    [9] V. M. Lopez, F. J. Azcondo, A. de Castro and R. Zane, “Universal digital controller for boost CCM power factor correction stages based on current rebuilding concept,” in IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3818-3829, July 2014, doi: 10.1109/TPEL.2013.2280077.
    [10] H. Gupta, P. Gajera and V. Gupta, “Novel single phase boost converter with low THD & Unity PF for power quality improve-ment in domestic application,” 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), 2020, pp. 70-74, doi: 10.1109/PARC49193.2020.246973.
    [11] L. Zhou, Y. Wu, J. Honea and Z. Wang, “High-efficiency true bridgeless totem pole PFC based on GaN HEMT: design chal-lenges and cost-effective solution,” Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Elec-tronics, Intelligent Motion, Renewable Energy and Energy Man-agement, 2015, pp. 1-8.
    [12] H. S. Nair and N. Lakshminarasamma, “Challenges in achieving high performance in boost PFC converter, “2017 IEEE Interna-tional Conference on Signal Processing, Informatics, Communi-cation and Energy Systems (SPICES), Kollam, 2017, pp. 1-6.
    [13] R. Martinez and P. N. Enjeti, “A high-performance single-phase rectifier with input power factor correction,” in IEEE Transactions on Power Electronics, vol. 11, no. 2, pp. 311-317, March 1996, doi: 10.1109/63.486181.
    [14] M. Ancuti, M. Svoboda, S. Musuroi, A. Hedes and N. Olarescu, “Boost PFC converter versus bridgeless boost PFC converter EMI analysis,” 2014 International Conference on Applied and Theo-retical Electricity (ICATE), 2014, pp. 1-6, doi: 10.1109/ICATE.2014.6972652.
    [15] F. Musavi, W. Eberle and W. G. Dunford, “A phase-shifted gating technique with simplified current sensing for the semi-bridgeless AC–DC converter,” in IEEE Transactions on Vehicular Technol-ogy, vol. 62, no. 4, pp. 1568-1576, May 2013, doi: 10.1109/TVT.2012.2231709.
    [16] D. K. Kim, Y. J., C. Y. Lim, B. Kang and G.W. Moon, “Bidirec-tional bridgeless PFC with reduced input current distortion and switching loss using gate skipping technique,” 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 2016, pp. 579-583, doi: 10.1109/ITEC-AP.2016.7513019.
    [17] L. H. Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008.
    [18] Q. Huang and A. Q. Huang, “Review of GaN totem-pole bridge-less PFC,” in CPSS Transactions on Power Electronics and Ap-plications, vol. 2, no. 3, pp. 187-196, Sept. 2017, doi: 10.24295/CPSSTPEA.2017.00018.
    [19] F. Yang, X. Ruan, Y. Yang, and Z. Ye, “Interleaved critical cur-rentmode boost PFC converter with coupled inductor,” IEEE Transactionson Power Electronics, vol. 26, no. 9, pp. 2404-2413, Sept. 2011.
    [20] C. Marxgut, J. Biela and J. W. Kolar, “Interleaved triangular current mode (TCM) resonant transition, single phase PFC rectifier with high efficiency and high power density,” The 2010 International Power Electronics Conference - ECCE ASIA -, Sapporo, 2010, pp.1725-1732.
    [21] J. Sun, X. Huang, N. N. Strain, D. J. Costinett and L. M. Tolbert, “Inductor design and ZVS control for a GaN-based high efficiency CRM totem-pole PFC converter,” 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 727-733, doi: 10.1109/APEC.2019.8721851.
    [22] Z. Liu, X. Huang, M. Mu, Y. Yang, F. C. Lee, and Q. Li, “Design and evaluation of GaN-based dual-phase interleaved MHz critical mode PFC converter,” in 2014 IEEE Energy Conversion Congress and Exosition (ECCE), Pittsburgh, PA, 2014, pp. 611-616.
    [23] F. Zhang, F. Z. Peng and Zhaoming Qian, “Study of the multilevel converters in DC-DC applications,” 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 2004, pp. 1702-1706 Vol.2, doi: 10.1109/PESC.2004.1355682.
    [24] M. T. Zhang, Y. Jiang, F. C. Lee and M. M. Jovanovic, “Sin-gle-phase three-level boost power factor correction converter,” Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition - APEC'95, 1995, pp. 434-439 vol.1, doi: 10.1109/APEC.1995.468984.
    [25] Q. Huang, Q. Ma, P. Liu, A. Q. Huang and M. de Rooij, “3kW four-level flying capacitor totem-pole bridgeless PFC rectifier with 200V GaN devices,” 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 81-88, doi: 10.1109/ECCE.2019.8913025.
    [26] T. A. Meynard and H. Foch, “Multi-level conversion: high voltage choppers and voltage-source inverters,” in Proc. 23rd Annu. IEEE Power Electron.Spec. Conf., Jun. 1992, vol. 1, pp. 397–403.
    [27] A. B. Ponniran, K. Orikawa and J. Itoh, “Minimum flying capac-itor for N-level capacitor DC/DC boost converter,” in IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 3255-3266, July-Aug. 2016, doi: 10.1109/TIA.2016.2555789.
    [28] H. Sepahvand, M. Khazraei, M. Ferdowsi and K. A. Corzine, “Capacitor voltage regulation and pre-charge routine for a flying capacitor active rectifier,” 2012 IEEE Energy Conversion Con-gress and Exposition (ECCE), 2012, pp. 4107-4112, doi: 10.1109/ECCE.2012.6342265.
    [29] A. Ruderman and B. Reznikov, “Simple time domain averaging methodology for flying capacitor converter voltage balancing dynamics analysis,” in Proc. IEEE Int. Symp. Ind. Electron., Jul. 2010, pp. 1064–1069.
    [30] D. M. V. D. Sype, K. D. Gusseme, A. P. M. V. D. Bossche and J. A. Melkebeek, “Duty-ratio feedforward for digitally controlled boost PFC converters,” in IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 108-115, Feb. 2005.
    [31] R. Hou, J. Lu and D. Chen, “Parasitic capacitance Eqoss loss mechanism, calculation, and measurement in hard-switching for GaN HEMTs,” 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018, pp. 919-924, doi: 10.1109/APEC.2018.8341124.
    [32] D. Kim, K. Park and K. Kim, “A Study on the high power factor and efficiency PFC circuit using wide band-gap semiconductors for ship charger,” 2019 22nd International Conference on Electri-cal Machines and Systems (ICEMS), 2019, pp. 1-4, doi: 10.1109/ICEMS.2019.8922415.
    [33] M. Y. M. Ghias, J. Pou, M. Ciobotaru and V. G. Agelidis, “Volt-age-balancing method using phase-shifted PWM for the flying capacitor multilevel converter,” in IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4521-4531, Sept. 2014.
    [34] S. Qin, Y. Lei, Z. Ye, D. Chou and R. C. N. Pilawa-Podgurski, “A high-power-density power factor correction front end based on seven-level flying capacitor multilevel converter,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1883-1898, Sept. 2019.
    [35] J. Rodriguez et al., “Multilevel converters: an enabling technology for high-power applications,” in Proceedings of the IEEE, vol. 97, no. 11, pp. 1786-1817, Nov. 2009.
    [36] A. Stillwell, E. Candan and R. C. N. Pilawa-Podgurski, “Active voltage balancing in flying capacitor multi-level converters with valley current detection and constant effective duty cycle control,” in IEEE Transactions on Power Electronics, vol. 34, no. 11, pp. 11429-11441, Nov. 2019.
    [37] L. Corradini, D. Maksimovic, P. Mattavelli, and R. Zane, Digital control of high-frequency switched-mode power converters. Ho-boken, NJ, USA: Wiley, 2015.
    [38] K. D. Gusseme, D. M. V. D. Sype, A. P. M. Van den Bossche and J. A. Melkebeek, “Digitally controlled boost power-factor-correction converters operating in both continuous and discontinuous con-duction mode,” in IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 88-97, Feb. 2005, doi: 10.1109/TIE.2004.841133.
    [39] Y. Cai, M. H. Ahmed, Q. Li and F. C. Lee, “Optimal design of megahertz LLC converter for 48-V bus converter application,” in IEEE Journal of Emerging and Selected Topics in Power Elec-tronics, vol. 8, no. 1, pp. 495-505, March 2020, doi: 10.1109/JESTPE.2019.2939469.
    [40] K. Venkatachalam, C. R. Sullivan, T. Abdallah and H. Tacca, “Accurate prediction of ferrite core loss with non-sinusoidal waveforms using only Steinmetz parameters,” 2002 IEEE Work-shop on Computers in Power Electronics, 2002. Proceedings., 2002, pp. 36-41, doi: 10.1109/CIPE.2002.1196712.
    [41] M. Mu and F. C. Lee, “A new core loss model for rectangular AC voltages,” 2014 IEEE Energy Conversion Congress and Exposi-tion (ECCE), 2014, pp. 5214-5220, doi: 10.1109/ECCE.2014.6954116.
    [42] Y. C. Niu, C. J. Yang, Y. M. Chen and Y. R. Chang, “Design of boost power factor corrector with GaN HEMT devices,” 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), 2017, pp. 1270-1274.
    [43] J. Muhlethaler, J. Biela, J. W. Kolar and A. Ecklebe, “Core losses under the dc bias condition based on steinmetz parameters,” in IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 953-963, Feb. 2012.
    [44] C. Fei, F. C. Lee and Q. Li, “High-efficiency high-power-density LLC converter with an integrated planar matrix transformer for high-output current applications,” in IEEE Transactions on Indus-trial Electronics, vol. 64, no. 11, pp. 9072-9082, Nov. 2017.
    [45] Z. Liao, Y. Lei and R. C. N. Pilawa-Podgurski, “Analysis and de-sign of a high power density flying-capacitor multilevel boost converter for high step-up conversion,” in IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4087-4099, May 2019.
    [46] TDK Corporation, Product Portals, Capacitors, Multilayer Ceramic Chip Capacitors, [Online], Available:
    https://product.tdk.com/en/search/capacitor/ceramic/mlcc/in-fo?part_no= C4532X7T2W474K230KA
    [47] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” in IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May. 2008.
    [48] R. Hou, J. Xu and D. Chen, “A multivariable turn-on/turn-off switching loss scaling approach for high-voltage GaN HEMTs in a hard-switching half-bridge configuration,” 2017 IEEE 5th Work-shop on wide bandgap Power Devices and Applications (WiPDA), 2017, pp. 171-176.
    [49] EPC2215 datasheet. [Online]. Available:https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2215_datasheet.pdf.
    [50] EPC2034 datasheet. [Online]. Available:https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2034_datasheet.pdf.
    [51] EPC2219 datasheet. [Online]. Available:https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2219_datasheet.pdf.
    [52] EPC2207 datasheet. [Online]. Available:https://epc-co.com/epc/Potals/0/epc/docments/datasheets/EPC2207_datasheet.pdf.

    無法下載圖示 全文公開日期 2024/09/14 (校內網路)
    全文公開日期 2024/09/14 (校外網路)
    全文公開日期 2024/09/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE