簡易檢索 / 詳目顯示

研究生: 陳昱豪
Yu-Hao Chen
論文名稱: 軟體定義網路中高效率以及低負擔的能源感知路由
Time Efficient and Low-overhead Energy-Aware Routing in Software Defined Networking
指導教授: 沈上翔
Shan-Hsiang Shen
口試委員: 金台齡
Tai-Lin Chin
黃琴雅
Chin-Ya Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 42
中文關鍵詞: 軟體定義網路能源感知路由
外文關鍵詞: Software Defined Networking, Energy Aware Routing
相關次數: 點閱:233下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年,由於網際網路的快速發展以及網路流量的急遽增加,能源消耗對於全世界許多網路服務供應商已成為一個勢不可擋的重要議題。軟體定義網路(Software Defined Network, SDN)為近幾年快速成長的新穎網路架構,SDN 可以有效率的使用網路資源以及達到控制能源消耗的目的。但是,大部分研究對於SDN用於節省能源的應用,鮮少考慮到頻繁的OpenFlow的訊息交換所產生的負擔,而因為多數的網路交換器的CPU有限,因此往往容易造成SDN網路架構的效能降低。本篇論文提出能源感知路由的方法,在SDN的架構下,有效率的減少網路設備所使用的端口數量進而達到能源節省的目的,以及減少端口的開關狀態進而減少頻繁的OpenFlow的訊息交換。此外,本篇論文也考慮到網路流量的負載平衡以及能源消耗兩者之間的調整平衡。我們將能源消耗問題轉化成為線性規劃(Integer Linear Programming, ILP)方程式並提出一個新穎的演算法,即有效率地降低能源消耗以及低負擔的能源感知路由(Time Efficient and Low-overhead Energy-Aware Routing, TELEAR)。本篇實驗顯示,TELEAR 比現有的感知路由方法更為有效率以及有較低的OpenFlow訊息交換所產生的負擔。


    Due to the rapid development of Internet and the increasing traffic load, power consumption becomes a critical issue for many network service providers around the world. The emerging technology, Software Defined Networking (SDN), can adaptively manage the network resources and control the power consumption. However, most previous studies for energy saving seldom consider the control overhead of OpenFlow operation due to the limitation of OpenFlow switch's CPU when applying SDN. In this paper, a novel algorithm in SDN enabled networks is investigated. The aim is to reduce the number of used links and the number of link state changes in a time efficient way so that the energy consumption and the control overhead of OpenFlow switches can be decreased respectively. Moreover, how to balance energy saving and congestion of traffic is also considered in this paper. Specifically, the energy consumption problem, which is NP-hard, for routing traffic in a network is formulated as an Integer Linear Programming (ILP) problem. A Time Efficient and Low-overhead Energy-Aware Routing (TELEAR) algorithm is proposed to dynamically route flows in a time efficient manner. The evaluation results show that TELEAR not only outperforms the other schemes in terms of computation time and the control overhead of OpenFlow switches but also achieves better energy saving.

    中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Energy Saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Energy Aware Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Energy Saving in SDN . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Problem Formulation and Proposed Algorithm . . . . . . . . . . . . . . . . . . 9 4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2 Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2.2 New demands arrive . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2.3 Demands finish . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 vi 5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Trade-off between energy saving and load balancing . . . . . . . . . . . 16 5.3 Compared Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4.1 Three Different Proportion of Topology . . . . . . . . . . . . . . 21 5.4.2 Random Real Traffic . . . . . . . . . . . . . . . . . . . . . . . . 25 5.4.3 A Large-scale Synthetic Topology . . . . . . . . . . . . . . . . . 28 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    [1] L. Chiaraviglio, M. Mellia, and F. Neri, “Minimizing ISP Network Energy Cost: Formulation and
    Solutions,” IEEE/ACM Transactions on Networking, pp. 463–476, Apr. 2012.
    [2] R. F. e Silva and P. M. Carpenter, “Energy Efficient Ethernet on Mapreduce Clusters: Packet Coalescing
    To Improve 10 GbE Links,” IEEE/ACM Transactions on Networking, vol. 25, pp. 2731–2742,
    Oct. 2017.
    [3] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright, “Power Awareness in
    Network Design and Routing,” in Proceedings of IEEE INFOCOM, pp. 457–465, Apr. 2008.
    [4] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A Power Benchmarking Framework for
    Network Devices,” in 8th International IFIP-TC Networking Conference, pp. 795–808, 2009.
    [5] F. Giroire, J. Moulierac, and T. K. Phan, “Optimizing Rule Placement in Software-Defined Networks
    for Energy-aware Routing,” in IEEE Global Communications Conference, pp. 2523–2529, Dec. 2014.
    [6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
    J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,” SIGCOMM Comput. Commun.
    Rev., vol. 38, pp. 69–74, Mar. 2008.
    [7] M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appenzeller, J. Little, J. Van Reijendam, P. Weissmann,
    and N. McKeown, “Maturing of OpenFlow and Software-Defined Networking through Deployments,”
    Computer Networks, vol. 61, pp. 151–175, Mar. 2014.
    [8] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis, and S. Banerjee, “DevoFlow:
    Cost-effective Flow Management for High Performance Enterprise Networks,” in Proceedings of the
    9th ACM SIGCOMM Workshop on Hot Topics in Networks, pp. 1–6, Oct. 2010.
    [9] S. Orlowski, M. Pi´oro, A. Tomaszewski, and R. Wess¨aly, “SNDlib 1.0–Survivable Network Design
    Library,” in Proceedings of the 3rd International Network Optimization Conference, Apr. 2007.
    [10] M. Webb et al., “SMART 2020: Enabling the Low Carbon Economy in the Information Age,” The
    Climate Group. London, vol. 1, no. 1, pp. 1–1, 2008.
    [11] V. Mathew, R. K. Sitaraman, and P. Shenoy, “Energy-Aware Load Balancing in Content Delivery
    Networks,” in Proceedings of IEEE INFOCOM, pp. 954–962, Mar. 2012.
    [12] S. Alanazi, M. Dabbagh, B. Hamdaoui, M. Guizani, and N. Zorba, “Reducing Data Center Energy
    Consumption Through Peak Shaving and Locked-In Energy Avoidance,” IEEE Transactions on Green
    Communications and Networking, vol. 1, pp. 551–562, Dec. 2017.
    [13] Y. Li, A. C. Orgerie, and J. M. Menaud, “Balancing the Use of Batteries and Opportunistic Scheduling
    Policies for Maximizing Renewable Energy Consumption in a Cloud Data Center,” in Euromicro
    32
    International Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 408–
    415, Mar. 2017.
    [14] Y. Tarutani, Y. Ohsita, and M. Murata, “Virtual Network Reconfiguration for Reducing Energy Consumption
    in Optical Data Centers,” IEEE/OSA Journal of Optical Communications and Networking,
    vol. 6, pp. 925–942, Oct. 2014.
    [15] P. Duan, K. Wang, X. Yu, L. Liu, H. Gu, and Y. Guo, “Flow Driven Energy-Aware Routing Algorithm
    in Data Center Network,” in International Conference on Parallel and Distributed Computing,
    Applications and Technologies (PDCAT), pp. 280–285, Dec. 2016.
    [16] H. Lin, M. Xu, and Y. Yang, “Robust Energy-Aware Routing with Uncertain Traffic Demands,” in
    International Conference on Computer Communication and Networks (ICCCN), pp. 1–8, Aug. 2015.
    [17] A. Khreishah, H. B. Salameh, I. Khalil, and A. Gharaibeh, “Renewable Energy-Aware Joint Caching
    and Routing for Green Communication Networks,” IEEE Systems Journal, pp. 1–10, 2016.
    [18] S. S. W. Lee and K. Y. Li, “Study of Dynamic Topology Change for Total Energy Consumption in
    Green IP Networks,” in IEEE International Conference on Green Computing and Communications
    and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 64–70, Aug. 2013.
    [19] D. Li, Y. Yu, J. Shi, and B. Zhang, “PALS: Saving Network Power With Low Overhead to ISPs and
    Applications,” IEEE/ACM Transactions on Networking, vol. 24, pp. 2913–2925, Oct. 2016.
    [20] Y. Shang, D. Li, and M. Xu, “Greening Data Center Networks with Flow Preemption and Energyaware
    Routing,” in IEEE Workshop on Local Metropolitan Area Networks (LANMAN), pp. 1–6, Apr.
    2013.
    [21] R. Bolla, R. Bruschi, F. Davoli, and C. Lombardo, “Fine-Grained Energy-Efficient Consolidation
    in SDN Networks and Devices,” IEEE Transactions on Network and Service Management, vol. 12,
    pp. 132–145, Jun. 2015.
    [22] X. Meng, L. Zheng, L. Li, and J. Li, “PAM: An Efficient Power-Aware Multi-level Cache Policy to
    Reduce Energy Consumption of Software Defined Network,” in International Conference on Industrial
    Networks and Intelligent Systems (INISCom), pp. 18–23, Mar. 2015.
    [23] G. Portaluri, D. Adami, A. Gabbrielli, S. Giordano, and M. Pagano, “Power Consumption-Aware
    Virtual Machine Placement in Cloud Data Center,” IEEE Transactions on Green Communications
    and Networking, vol. 1, pp. 541–550, Dec. 2017.
    [24] M. R. Celenlioglu, S. B. Goger, and H. A. Mantar, “An SDN-based Energy-Aware Routing Model for
    Intra-Domain Networks,” in International Conference on Software, Telecommunications and Computer
    Networks (SoftCOM), pp. 61–66, Sep. 2014.
    [25] H. Li, G. Jiang, and R. Chai, “Energy Consumption Optimization Based Joint Routing and Flow
    Allocation Algorithm for Software Defined Networking,” in International Symposium on Wireless
    Personal Multimedia Communications (WPMC), pp. 311–316, Nov. 2016.
    33
    [26] M. N. Siraj, N. Javaid, Q. Shafi, Z. Ahmed, U. Qasim, and Z. A. Khan, “Energy Aware Dynamic Routing
    Using SDN for a Campus Network,” in International Conference on Network-Based Information
    Systems (NBiS), pp. 226–230, Sep. 2016.
    [27] A. Amokrane, R. Langar, R. Boutaba, and G. Pujolle, “Flow-Based Management For Energy Efficient
    Campus Networks,” IEEE Transactions on Network and Service Management, vol. 12, pp. 565–579,
    Dec. 2015.
    [28] F. Giroire, D. Mazauric, J. Moulierac, and B. Onfroy, “Minimizing Routing Energy Consumption:
    from Theoretical to Practical Results,” in IEEE Green Computing and Communications (GreenCom),
    pp. 252–259, Dec. 2010.
    [29] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “CARPO: Correlation-Aware Power Optimization in
    Data Center Networks,” in Proceedings of IEEE INFOCOM, pp. 1125–1133, Mar. 2012.
    [30] T. M. Nam, N. H. Thanh, N. Q. Thu, H. T. Hieu, and S. Covaci, “Energy-Aware Routing based on
    Power Profile of Devices in Data Center Networks using SDN,” in International Conference on Electrical
    Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTICON),
    pp. 1–6, Jun. 2015.

    QR CODE