簡易檢索 / 詳目顯示

研究生: 麥昊生
Ho-Sang Mak
論文名稱: 應用生成對抗網路於卷積神經網路之局部放電圖譜辨識
Application of Generative Adversarial Network to Convolutional Neural Network for Phase Resolved Partial Discharge Pattern Recognition
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
Hong-Chan Chang
黃維澤
Wei-ze Huang
李俊耀
Chun-Yao Lee
陳鴻誠
Hong-Cheng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 63
中文關鍵詞: 局部放電相位分析圖譜(PRPD 圖譜)生成對抗網路卷積神經網路
外文關鍵詞: Phase Resolved Partial Discharges(PRPD patterns), Generative Adversarial Network(GAN), Convolutional Neural Network (CNN)
相關次數: 點閱:268下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著國內電力需求增加,以及近年再生能源的推動發展,電力系統的強健性將成為重要課題,而預防性的電力設備故障診斷便是其中重要一環。局部放電的檢測和圗譜辨識在近年已有不少發展,然而在局部放電類型辨識上,普遍以特徵提取的方式,對圗譜進行預處理,為解決樣本數不足的問題。
    本文主要提出應用於高壓設備故障診斷之局部放電相位分析圖譜(PRPD 圖譜)作為輸入特徵,使用卷積神經網路辨識局部放電類型。並同時使用相同輸入特徵,即局部放電相位分析圖譜(PRPD 圖譜),通過利用生成對抗網路輸出圖譜,增加卷積神經網路的輸入特徵樣本數,以加強卷積神經網路辨識局部放電類型的可靠度。
      結果指出,在使用生成對抗網路生成圖譜,從而增加輸入特徵樣本數的方法下,卷積神經網路在辨識局部放電類型的表現上有所提升,得見方法的可行性,可作為日後相關研究提供一個具有價值的參考依據。


    With the increase in domestic power demand and the development of renewable energy in recent years, the robustness of the power system will become an important issue, and preventive power equipment fault diagnosis is an important part of it. In recent years, there have been many developments in the detection and identification of partial discharges. However, in the identification of partial discharge types, feature extraction is generally used to preprocess the data to solve the problem of insufficient samples.
    This paper mainly proposes the phase resolved partial discharge analysis patterns (PRPD patterns) applied to the fault diagnosis of high-voltage equipment as the input feature, and uses the convolutional neural network to identify the partial discharge type. And use the same input feature at the same time, that is, the phase resolved partial discharge analysis patterns (PRPD patterns), and increase the number of input feature samples of the convolutional neural network by using the generative adversarial network output map to strengthen the convolutional neural network to identify the partial discharge type. reliability.
    The results pointed out that under the method of using the generative adversarial network to generate the map, thereby increasing the number of input feature samples, the performance of the convolutional neural network in identifying the type of partial discharge has been improved. Research provides a valuable reference basis.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究方法 5 1.4 章節概述 7 第二章 局部放電介紹 8 2.1 前言 8 2.2 局部放電原理 8 2.2.1 局部放電類型 8 2.2.2 局部放電的參數 9 2.2.3 局部放電產生原因 12 2.3 局部放電相位分析圖(PRPD圖譜) 13 2.4 實驗數據 14 2.5 本章小結 14 第三章 深度學習模型 15 3.1 前言 15 3.2 深度學習簡介 15 3.2.1 神經網路 15 3.2.2 神經網絡種類 16 3.2.3 神經元 18 3.2.4 激勵函數 18 3.2.5 誤差最小化 21 3.2.6 損失函數 22 3.3 資料集 23 3.3.1 建構資料集 23 3.3.2 交叉驗證(Cross Validation) 25 3.4 卷積神經網路(Convolutional Neural Network-CNN) 26 3.4.1 卷積神經網路簡介 26 3.4.2 卷積層(Convolution layer) 27 3.4.3 池化層(Pooling Layer) 28 3.4.4 全連接層 30 3.5 生成對抗網路(Generative Adversarial Network-GAN) 31 3.5.1 生成對抗網路簡介 31 3.5.2 生成網路(Generator) 32 3.5.3 判別網路(Discriminator) 34 第四章 實驗結果與探討 36 4.1 前言 36 4.2 建立卷積神經網路模型 36 4.2.1 卷積神經網路採用不同激勵函數之探討 37 4.2.2 隱藏層神經元數目之探討 40 4.3 建立生成對抗網路模型 41 4.3.1 生成對抗網路模型採用不同架構深度之探討 42 4.3.2 生成網路模型採用不同激勵函數之探討 44 4.4 生成局部放電相位分析圖譜 46 4.5 加入生成圖譜之卷積神經網路探討 47 第五章 結論與未來研究方向 48 5.1 結論 48 5.2 未來研究方向 49 參考文獻 50

    [1] Y. Lecun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D.Jackel: Backpropagation Applied to Handwritten Zip Code Recognition, Neural Computation, 1(4):541-551, Winter 1989.
    [2] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov.1998, doi: 10.1109/5.726791.
    [3] Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. "ImageNet classification with deep convolutional neural networks" (PDF). Communications of the ACM. 60 (6): 84–90. doi:10.1145/3065386. ISSN 0001-0782. S2CID 19590877, May 24 2017.
    [4] M. D. Zeiler, and R. Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. Springer, Cham, 2014.
    [5] K. Simonyan, and A. Zisserman. “Very deep convolutional networks for large-scale image recognition”. arXiv preprint arXiv:1409.1556, 2014.
    [6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, A. Rabinovich, Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9), 2015.
    [7] K. He, X. Zhang, S. Ren, and J. Sun,” Deep residual learning for image recognition”. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778), 2016.

    [8] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, (2016).SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size. arXiv preprint arXiv:1602.07360.
    [9] C. -K. Chang, H. -H. Chang and B. K. Boyanapalli, "Application of Pulse Sequence Partial Discharge Based Convolutional Neural Network in Pattern Recognition for Underground Cable Joints," in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 29, no. 3, pp. 1070-1078, doi: 10.1109/TDEI.2022.3168328, June 2022.
    [10] Y. Wang, J. Yan, Q. Sun, J. Li and Z. Yang, "A MobileNets Convolutional Neural Network for GIS Partial Discharge Pattern Recognition in the Ubiquitous Power Internet of Things Context: Optimization, Comparison, and Application," in IEEE Access, vol. 7, pp. 150226-150236, doi: 10.1109/ACCESS.2019.2946662, 2019.
    [11] X. Peng et al., "A Convolutional Neural Network-Based Deep Learning Methodology for Recognition of Partial Discharge Patterns from High-Voltage Cables," in IEEE Transactions on Power Delivery, vol. 34, no. 4, pp. 1460-1469, doi: 10.1109/TPWRD.2019.2906086, Aug. 2019.
    [12] V. -N. Tuyet-Doan, H. -A. Pho, B. Lee and Y. -H. Kim, "Deep Ensemble Model for Unknown Partial Discharge Diagnosis in Gas-Insulated Switchgears Using Convolutional Neural Networks," in IEEE Access, vol. 9, pp. 80524-80534, doi: 10.1109/ACCESS.2021.3084950, 2021.
    [13] T. -D. Do, V. -N. Tuyet-Doan, Y. -S. Cho, J. -H. Sun and Y. -H. Kim, "Convolutional-Neural-Network-Based Partial Discharge Diagnosis for Power Transformer Using UHF Sensor," in IEEE Access, vol. 8, pp. 207377-207388, doi:10.1109/ACCESS.2020.3038386, 2020

    [14] Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua. Generative Adversarial Networks. arXiv:1406.2661, 2014.
    [15] J. A. Ardila-Rey, J. E. Ortiz, W. Creixell, F. Muhammad-Sukki and N. A. Bani, "Artificial Generation of Partial Discharge Sources Through an Algorithm Based on Deep Convolutional Generative Adversarial Networks," in IEEE Access, vol. 8, pp. 24561-24575, doi: 10.1109/ACCESS.2020.2971319, 2020.
    [16] “High voltage test techniques – Partial discharge measurement,”
    IEC 60270, 2001
    [17] Zhicheng Wu,“Source database for Machine-learning-based PD Pattern Recognition in GIS”, Mendeley Data, V1, doi: 10.17632/cz8gwg9d2v.1, 2020
    [18] Yeh James,“[資料分析&機器學習] 第5.1講: 卷積神經網絡介紹(Convolutional Neural Network) ”, Dec 25, 2017

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE