簡易檢索 / 詳目顯示

研究生: 邱育杉
YU-SHAN CIOU
論文名稱: 不同靶材濺鍍與硒化製備硒化銅銦鎵薄膜及其特性分析
Preparation and Analysis of Cu(In,Ga)Se2 Thin Films Made by Sputtering with Different Targets Followed by Post-Selenization
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 薛人愷
Ren-Kae Shiue
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 126
中文關鍵詞: 濺鍍薄膜硒化硒化銅銦鎵
外文關鍵詞: Post-Selenization, Cu(In, Ga)Se2
相關次數: 點閱:172下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,許多研究者紛紛投入CIGSe薄膜太陽能電池真空製程之研究,而真空製程方式極多,主要分為濺鍍與蒸鍍,本實驗使用真空濺鍍當作主要製程。
    本實驗是利用不同靶材濺鍍出CIGSe薄膜,再將陶瓷CIGSe薄膜與陶金CIGSe薄膜進行不同硒源與不同溫度的退火,欲得到Cu0.9In0.7Ga0.3Se2,最後藉由將吸收層進行FE-SEM、EDS、XRD與霍爾電特性量測,探討不同組成的靶材與不同硒化條件對CIGSe薄膜的影響。將較佳之參數製備成電池元件(Ag/ITO(DC supttering,500 nm)/i-ZnO(RF sputtering,50 nm)/CdS(CBD,50 nm)/吸收層(RF sputtering,1.5 μm)/Mo(DC supttering,900nm),利用擬太陽能光測試儀器測試其電池之光電轉換效率。
    實驗結果顯示,陶瓷CIGSe薄膜於2階段600 oC下硒化後,薄膜表面型態平整且緻密,晶粒粒徑約為1-5 nm,組成接近Cu0.9In0.7Ga0.3Se2,XRD分析為CIGSe單一相;陶瓷CIGSe薄膜於2階段550 oC下硒化後,表面型態平整且緻密,晶粒粒徑約為1.5-3 μm,組成接近Cu1In0.8Ga0.2Se2,XRD分析為CIGSe單一相。將陶瓷CIGSe薄膜製成電池元件,其光電轉換效率為0.052%。


    In recent years, The vacuum processes for makingCu(In,Ga)Se2
    (CIGSe) solar cells thin-film solar cell are gradually getting researchers, attentions. There are many ways for vacuum processes. Evaporation and sputtering process are the most commonly used. In this experiment, we used sputtering vacuum process as our major process.
    In this study, CIGSe thin film were sputtering by different targets, ceramic CIGSe thin film and cermet CIGSe thin film were followed by selenization with different Se sources and annealing temperatures. The quality of the absorption layer was analyzed by X-ray diffractometer, field-emission scanning electron microscope equipped with energy dispersive X-ray spectrometer and Hall measurement. Different targets and different conditions were studied for the effects of the CIGSe thin films .The CIGSe solar cell was constituted with the stacking form of Ag /ITO/ ZnO/ CdS/ CIGSe/Mo. The performance of the solar cells was evaluated under the standard AM1.5 illumination.
    The experimental results showed that the ceramic CIGSe thin film of a grain size of 1-5 μm after two stages selenization at 600 oC had shown the best performance with dense microstructure and Composition closed Cu0.9In0.7Ga0.3Se2. On the other hand, the cermet CIGSe thin film of a grain size of 1.5-3 μm after two stages selenization at 550 oC had shown the best performance with dense microstructure and Composition closed Cu1In0.8Ga0.2Se2 .The stacked solar cells displayed the power conversion efficiencies of 0.052% .

    摘要 II Abstract III 致謝 IV 目錄 V 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1-1前言 1 1-2太陽能電池分類2 2 1-3薄膜太陽能電池種類 2 1-3-1結晶矽太陽能電池 2 1-3-2非晶系矽太陽能電池 3 1-3-3碲化鎘(CdTe)太陽能電池 4 1-3-4染料敏化太陽能電池 (dye-sensitized solar cell,DSSC) 4 1-3-5 硒化銅銦鎵太陽能電池 (Copper Indium Gallium Diselenide solar cells, CIGSe) 5 1-4 研究動機與目的 5 第二章 基礎理論及文獻回顧 7 2-1太陽能電池工作原理3 7 2-1-1 p-n接合 7 2-1-2光伏特效應(Photovoltaic effect ) 8 2-1-3太陽能電池的效率 9 2-2 CIGSe薄膜太陽能電池基本構造 11 2-2-1 鈉玻璃基板 (Soda-lime glass) 12 2-2-2底電極(Mo back contact) 13 2-2-3主吸收層(Absorber layer) 13 2-2-4緩衝層 45 2-2-5窗口層 46 2-2-6上電極 46 第三章 實驗步驟 47 3-1實驗設備說明23,24 47 3-1-1真空熱壓機 47 3-1-2鍍膜沉積系統 47 3-1-3高溫真空管型爐 48 3-1-4化學水浴相關儀器設備 49 3-2實驗藥品和氣體選擇 51 3-2-1藥品 51 3-2-2氣體 52 3-3實驗流程 53 3-3-1基板的選擇與清洗 54 3-3-2Mo底基板的製備 54 3-3-3粉體製備 55 3-3-4 CIGS靶材製備 55 3-3-4靶材濺鍍 56 3-3-5薄膜硒化退火 57 3-3-6緩衝層製備 57 3-3-7窗口層製備 57 3-3-8透明導電層製備 59 3-3-9上電極製備 59 3-4實驗參數 61 3-5分析儀器 64 3-5-1 X光繞射分析儀 (X-ray Diffractometer,XRD) 64 3-5-2場發射掃描式電子顯微鏡 (Field Emission of Scanning Electron Microscope,FE-SEM) 64 3-5-3 霍爾量測 (Hall Effect Measurement System) 65 3-5-4擬太陽能光測試儀 (Standard AM 1.5 illumination meter) 65 第四章 結果與討論 66 4-1 CIGSe薄膜SEM表面型態分析與EDS成分分析 66 4-1-1 陶瓷靶濺鍍之CIGSe薄膜 66 4-1-2陶瓷/金屬雙靶共濺鍍下之CIGSe薄膜 87 4-2 CIGSe吸收層之XRD結構性質分析 103 4-2-1陶瓷CIGSe薄膜之XRD 103 4-2-1陶瓷/金屬雙靶共濺鍍所得CIGSe薄膜之XRD 107 4-3霍爾量測 110 4-3-1陶瓷CIGSe薄膜之霍爾量測 110 4-3-2陶瓷/金屬雙靶共濺鍍所得CIGSe薄膜之霍爾量測 115 4-4 CIGSe太陽能電池之光電轉換效率量測 120 第五章 結論 122 參考文獻 124

    [1]許晉通,銅-鋅-錫 靶材濺鍍製備效率3.7 % 之薄膜太陽能電池及其分析,國立台灣科技大學 材料科學與工程所,碩士學位論文 (2012)
    [2]柯志昇,「綠色能源當道-全球太陽能電池市場與產業發展趨勢分析」,2008。
    [3]林明獻,「太陽電池技術入門」,全華科技圖書股份有限公司,2008。
    [4]P. Jackson*, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Prog. Photovolt: Res. Appl. 19, 894-897 (2011).
    [5]Zhou Yu, Yong Yan, Shasha Li , Yanxia Zhang, Chuanpeng Yan, Lian Liu, Yong Zhang, Yong Zhao, Significant effect of substrate temperature on the phase structure, optical and electrical properties of RF sputtered CIGS films, Applied Surface Science 264 (2013) 197– 201
    [6]Chia-Hsiang Chen , Tzu-Ying Lin , Chia-Hao Hsu , Shih-Yuan Wei , Chih-Huang Lai , Comprehensive characterization of Cu-rich Cu(In,Ga)Se2 absorbers prepared byone-step sputtering process , Thin Solid Films 535 (2013) 122–126
    [7]Kuang-Hsiang Liao, Cherng-Yuh Su, Yu-Ting Ding, Cheng-Tang Pan, Microstructural revolution of CIGS thin film using CuInGa ternary target during
    sputtering process, Applied Surface Science 263 (2012) 476–480
    [8]Chia-Hsiang Chen , Wen-ChiehShih , Chih-YuChien , Chia-HaoHsu , Yan-Huie Wu, Chih-HuangLai , A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In,Ga)Se2 absorbers without extra Se supply , Solar Energy Materials & Solar Cells 103 (2012) 25–29
    [9]X.L. Zhu, Y.M.Wanga,n, Z.Zhou , A.M.Li a, L.Zhang , F.Q.Huang , 13.6% efficient Cu(In,Ga)Se2 solar cell with absorber fabricated by RF sputtering of (In,Ga)2Se3 and CuSe targets Solar ,
    Energy Materials & Solar Cells 113 (2013) 140–143
    [10]Huan-Hsin Sung , Du-Cheng Tsai , Zue-Chin Chang , Bing-Hau Kuo , Yi-Chen Lin , Tien-Jen Lin,Shih-Chang Liang , Fuh-Sheng Shieu , Ga gradient behavior of CIGS thin films prepared through selenization of CuGa/In stacked elemental layers, Surface & Coatings Technology xxx (2014) xxx–xxx
    [11]Shu Zhang, Lu Wu, Ruoyu Yue, Zongkai Yan, Haoran Zhan, Yong Xiang , Effects of Sb-doping on the grain growth of Cu(In, Ga)Se2 thin films fabricated by means of single-target sputtering, Thin Solid Films 527 (2013) 137–140
    [12]Z.Q. Li , Q.Q. Liu , J.J. Li , Z. Sun , Y.W. Chen , Z. Yang , S.M. Huang , Growth of Zn doped Cu(In,Ga)Se2 thin films by RF sputtering for solar cell applications, Solid-State Electronics 68 (2012) 80–84
    [13]Jeha Kim , Ho-Sub Lee , Nae-Man Park , Post-annealing effect on the reactively sputter-grown CIGS thin films and its influence to solar cell performance, Current Applied Physics xxx (2013) 1-6
    [14]Y.C. Lin , W.T.Yen , Y.L.Chen , L.Q.Wang, F.W.Jih , Influence of annealing temperature on properties of Cu(In,Ga)(Se,S)2 thin films prepared by co-sputtering from quaternary alloy and In2S3 targets , Physica B 406 (2011) 824–830
    [15]Y.C. Lin, J.H. Ke, W.T. Yen, S.C. Liang, C.H. Wu, C.T. Chiang, Preparation and characterization of Cu(In,Ga)(Se,S)2 films without selenization by co-sputtering from Cu(In,Ga)Se2 quaternary and In2S3 targets, Applied Surface Science 257 (2011) 4278–4284
    [16]Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins,Bobby To and Rommel Noufi, 19_9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81_2% Fill Factor, Prog. Photovolt: Res. Appl. 2008; 16:235–239
    [17]Cong kang Xu,Hong wang Zhang,James Parry, Samanthe Perera,Gen Long,Hao Zeng , A single source three-stage evaporation approach to CIGS absorber layer for thin film solar cells , Solar EnergyMaterials&SolarCells117(2013)357–362
    [18]Xiaohui Liu , ZhengxinLiu , FanyingMeng , MutsumiSugiyama , Improvement of Cu(In,Ga)Se2 thin film solar cells by surface sulfurization using ditertiarybutylsulfide ,Solar EnergyMaterials&SolarCells124(2014)227–231
    [19]A. Chirila, P. Bloesch, S. SeyrlingA. Uhl, S. Buecheler, F. Pianezzi, C. Fella,
    J. Perrenoud, L. Kranz, R. Verma, D. Guettler, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, D. Bre′maud and A.N. Tiwari, Cu(In,Ga)Se2 solar cell grown on flexible polymer substrate with efficiency exceeding 17%,Prog. Photovolt: Res. Appl. 2011; 19:560–564
    [20]Min Yuan , David B. Mitzi , Oki Gunawan , Andrew J. Kellock, S. Jay Chey , Vaughn R. Deline , Antimony assisted low-temperature processing of CuIn1−xGaxSe2−ySy solar cells, Thin Solid Films 519 (2010) 852–856
    [21]Raghu N.Bhattacharya , Mi-KyungOh , YounghoKim , CIGS-based solar cells prepared from electrodeposited precursor films,Solar Energy Materials & Solar Cells 98 (2012) 198–202
    [22]Teodor K. Todorov, Oki Gunawan, Tayfun Gokmen and David B. Mitzi, Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell, Prog. Photovolt: Res. Appl. 2013; 21:82–87
    [23]陳建志,利用不同前驅物以油墨網印法製備硒化銅銦鎵太陽能電池及其分析,國立台灣科技大學 材料科學與工程所,碩士學位論文 (2011)

    [24]杜永勤,銅-硒化銦-鎵靶材濺鍍製備硒化銅銦鎵薄膜太陽能電池及其分析,
    國立台灣科技大學 材料科學與工程所,碩士學位論文 (2011)
    [25]Yong Yan • Shasha Li • Yufeng Ou • Yaxin Ji • Chuanpeng Yan • Lian Liu • Zhou Yu • Yong Zhao, Structure and properties of CIGS films based on one-stage
    RF-sputtering process at low substrate temperature, J. Mod. Transport. (2014) 22(1):37–44

    QR CODE