簡易檢索 / 詳目顯示

研究生: 楊雅芬
Yan-Fan young
論文名稱: 以二氧化碳雷射改善PZT薄膜於焦電感測器之應用
PZT films improved by CO2 laser annealing on the application of pyroelectrical sensors
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 李維楨
Wei-chen (George) Lee
張瑞慶
Rwei-Ching Chang
蕭俊卿
Chun-Ching Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 焦電感測器氣膠沈積法鈣鈦礦CO2雷射退火
外文關鍵詞: pyroelectrical sensors, Aerosol Deposition Method, Perovskite, CO2 laser annealing
相關次數: 點閱:331下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋯鈦酸鉛(PZT)焦電薄膜感測器利用焦電效應,將溫度變化轉成焦電訊號。焦電感測器之焦電響應成為感測器優劣之重要指標,而影響焦電響應因素有吸收層厚度與材質、焦電層薄膜品質、隔熱層材質與厚度、基材種類與厚度及極化條件等。因此本文主要探討以退火方式改善PZT焦電薄膜品質,其薄膜採用氣膠沈積法沈積於Au/Cr/Si3N4/Si基材上,並以CO2雷射及爐管退火製作高品質與擇優取向的鈣鈦礦結構之PZT薄膜,並以X射線繞射儀(XRD)探查PZT薄膜的晶體結構。PZT焦電薄膜感測器將使用微機電製程製作多層膜結構。焦電感測器量測方式主要以氦氖雷射,搭配斷波器控制紅外線的頻率,來量測焦電感測器之電壓響應。
    實驗結果顯示,以2μm厚之PZT薄膜使用CO2雷射退火,而雷射功率以121W/cm2及133.7W/cm2,退火時間分別為30秒及20秒,其焦電感測器之電壓響應值均約為0.5V/W比未退火試片高約3倍。而2μm厚之PZT薄膜以爐管退火溫度580℃持溫30分鐘,電壓響應值為0.46V/W,因此得知PZT薄膜使用CO2雷射退火,具有低溫、短時間之製程優點。以XRD評估PZT薄膜於CO2雷射退火之晶體構造,其結果發現CO2雷射有助於改善PZT薄膜之結晶品質。另外,以薄膜式基材製作PZT焦電感測器亦可改善其電壓響應。


    Thin film PZT(Lead Zirconate Titanate) pyroelectric sensors use the pyroelectric effect to convert temperature variation to corresponding electrical signal. The quality of PZT film is a key factor to determine the responsivity of PZT pyroelectric sensors which can be also influenced by absorption layer, pyroelectric layer, isolation layer, substrate, and poling conditions. Therefore, PZT thin film improved by annealing process is focused in present work. PZT thin films are deposited on the Au/Cr/Si3N4/Si substrate by the aerosol deposition method. Then, both annealing methods of CO2 laser and furnace are used to fabricate high quality PZT thin films with orientation-selective perovskite phase. XRD(X-ray Diffraction) is also used to identify the crystal structure of PZT films. PZT pyroelectric sensor is a multilayer structure, and fabricated by MEMS process. A calibrated He-Ne laser and a mechanical chopper producing a modulated frequency are used to measure the voltage responsivity of PZT pyroelectric sensors.
    From the results of current work, the voltage responsivity of PZT pyroelectric sensor with PZT film thickness of 2μm is about 0.5 V/W under CO2 laser annealing with both conditions of 121W/cm2 and 30 seconds, 133.7 W/cm2 and 20 seconds, which is larger than that of PZT un-annealed about 3 times. In addition, the voltage responsivity of PZT pyroelectric sensor with PZT film thickness of 2μm is about 0.46 V/W under furnace annealing with 580℃ and 30 minutes. Hence, PZT thin films can be annealed by CO2 laser with the advantages of room temperature process and short time fabrication. The crystal structure of PZT thin films can be also improved by CO2 laser annealing, which is identified by XRD. In addition, the PZT pyroelectric sensor under silicon substrate with back-side etching can effectively improve the voltage responsivity.

    摘 要--------------------------------------------------I Abstract-------------------------------------------------II 誌 謝------------------------------------------------III 目 錄-------------------------------------------------IV 圖表索引-------------------------------------------------VI 第一章 緒論-------------------------------------------1 1-1 研究背景與動機----------------------------------1 1-2 文獻回顧----------------------------------------3 1-3 研究目的----------------------------------------8 第二章 理論介紹--------------------------------------20 2-1 紅外線輻射-------------------------------------20 2-2 焦電效應---------------------------------------21 2-3 焦電響應---------------------------------------22 2-4 氣膠沈積法-------------------------------------25 2-5 CO2雷射輔助退火製程----------------------------26 2-6 X-ray繞射儀------------------------------------28 第三章 焦電感測器之製作------------------------------40 3-1 焦電感測器之設計-------------------------------40 3-2 焦電感測器之製程步驟---------------------------41 3-3 焦電感測器之製程參數---------------------------46 3-4 氣膠沈積之製程參數-----------------------------47 3-5 CO2雷射退火與爐管退火參數----------------------48 3-6 焦電感測器之極化參數---------------------------48 3-7 薄膜式基材PZT焦電感測器之設計與製程------------49 第四章 量測與分析------------------------------------58 4-1 焦電訊號量測設備-------------------------------58 4-2 CO2雷射退火PZT之焦電感測器訊號量測-------------58 4-3 爐管退火PZT之焦電感測器訊號量測----------------60 4-4 以XRD量測PZT薄膜晶格結構-----------------------60 4-5 薄膜式基材PZT焦電感測器之訊號量測--------------61 第五章 結論-------------------------------------------75 5-1 結論-------------------------------------------75 5-2 未來與展望-------------------------------------76 參考文獻-------------------------------------------------77 作者簡介-------------------------------------------------81

    [1]張君偉,「雙階段濺鍍技術於氧化鋅焦電感測器響應之影響」,碩士論文,台灣科技大學機械工程系,台北 (2007)。
    [2]王星強,「多層薄膜氧化鋅焦電感測器之殘留應力分析」,碩士論文,台灣科技大學機械工程系,台北 (2008)。
    [3]陳玉林,「焦電薄膜紅外線感測器的設計與製造」,碩士論文,台灣大學機械工程學研究所,台北 (2000)。
    [4]曾增春,溫度量測學,科技圖書股份有限公司 (1983)。
    [5]Sze, S. M., semiconductor sensor, John Wiley & Sons, Inc (1994).
    [6]劉俊廷,「砷化銦金屬絕緣體半導體電容與紅外線光偵檢器之研究」,碩士論文,國立台灣大學電機工程研究所,台北 (1998)。
    [7]Rogalski, A., “Infrared detectors:status and trends,” Progress in Quantum Electronics, 27, 59-210 (2003).
    [8]巫瑞琪,「輻射溫度計」,碩士論文,國立中央大學光電科學研究所 (1996)。
    [9]Müller, M., Budde, W., Gottfried-Gottfied, A., Huebel, R., Jähne, R., and Kück, H., “A Thermoelectric Infrared Radiation Sensor with Monolithically Integrated Amplifier Stage and Temperature Sensor,” Sensors and Actuators A, 54, 601-605 (1996).
    [10]Lenggenhager, R., “CMOS Thermoelectric Infrared Sensors,” Physical Electronics Laboratory, ETHZ, Zurich, Diss. ETH No. 10744 (1994).
    [11]Ho, J. J., Fang, Y. K., Lee, W. J., Chen, F. Y., Hsieh, W. T., Ting, S. F., Lee, K. H., Hsieh, M. C., Chang, C. P., and Wu, K. H., “Analysis of Substrate Effects on the Response of Pyroelectric Thin-film Infrared Sensors,” Microscale Thermophysical Engineering, 3, 4, 263-272 (1999).
    [12]Chong, N., Chan, H. L. W., and Choy, C. L., “Pyroelectric Sensor Array for In-line Monitoring of Infrared Laser,” Sensors and Actuators A, 96, 231-238 (2002).
    [13]Ye, C. P., Tamagawa, T., and Polla, D. L., “Experimental Studies on Primary and Secondary Pyroelectric effects in Pb(ZrxTi1-x)O3, PbTiO3, and ZnO thin Film,” Journal of Applied Physics, 70, 10, 5538-5543 (1991).
    [14]Ho, J. J., Fang Y. K., Lee, W. J., Chen, F. Y., Hsieh, W. T., Ting, S. F., Ju, M. S., Huang, S. B., Wu, Kun-Hsien, and Chen, C. Y., “The Dynamic Response Analysis of a Pyroelectric Thin-Film Infrared Sensor with Thermal Isolation Improvement Structure,” IEEE Transactions on Electron Devices, 46, 12, 2289-2294 (1999).
    [15]Takayama, R., Tomita, Y., Iijima, K., and Ueda, I., “Pyroelectric properties and application to infrared sensors of PbTiO3, PbLaTiO3, and PbZrTiO3 ferroelectric thin films,” Ferroelectrics, 118, 325-342 (1991).
    [16]Fujii, S., Kamada, T., Hayashi, S., Tomita, Y., Takayama, R., Hirao, T., Nakayama, T., and Deguchi, T., “Pyroelectric linear array infrared sensors made of La-modified PbTiO3 thin films and their applications,” SPIE, 2552, 612-621 (1995).
    [17]Chang, C. C., Tang, C. S., “An integrated pyroelectric infrared sensor with a PZT thin film,” Sensors and Actuators A, 65, 171-174 (1998).
    [18]Lienhard, D., Heepmann, F., and Ploss, B., “Thin nickel films as absorbers in pyroelectric sensor arrays,” Microelectronic Engineering, 29, 101-104 (1995).
    [19]Setiadi, D., Regtien, P. P. L., “A VDF/TrFE copolymer on silicon pyroelectric sensor: design considerations and experiments,” Sensors and Actuators A, 46/47, 408-412 (1995).
    [20]汪建民,陶瓷技術手冊,中華民國粉末冶金協會,中華名國產業科技發展協進會,第527~549頁,民國八十三年七月。
    [21]Jona, F., Shirane, G., “Ferroelectric Crystals,” Dover Publications, Inc., 11-14, 1993.
    [22]吳朗,“電子陶瓷壓電”,全欣資訊圖書,1994。
    [23]Xu, Y., “Ferroelectric Materials and Their Applications,” North-Holland, New York (1991).
    [24]Schaffer, J. P., Saxena, A., Antolovich, S. D., Sanders, T. H., Warner, S. B., “The science and design of engineering materials,” Richard D. Irwin, Inc., 497-503 (1995).
    [25]Sakamoto, W. K., Shibatta-Kagesawa, S. T. Melo, W. L. B., “Voltage responsivity of pyroelectric sensor,” Sensors and Actuators, 77, 28–33 (1999).
    [26]Sun, L. L., Tan, O. K., Liu, W. G. Zhu, W. G., Yao, X., “Poling of multilayer Pb(Zr0.3Ti0.7)O3/PbTiO3 thin film for pyroelectric infrared sensor application,” Infrared Physics & Technology, 44, 177–182 (2003).
    [27]Ploss, B., Lienhard, D., and Sieber, F., “Thermal simulation of micromachined bridges for integrated pyroelectric sensor arrays,” Microelectronic Engineering, 29, 75-78 (1995).
    [28]Li, L., Zhang, L., Yao, X., Li, B., “Computer simulation of temperature field of multilayer pyroelectric thin film IR detector,” Ceramics International, 30, 1847-1850 (2004).
    [29]Akedo, J., Lebedev, M., “Effects of annealing and poling conditions on piezoelectric
    properties of Pb(Zr0.52Ti0.48)O3 thick films formed by aerosol deposition method,” Journal of Crystal Growth, 235, 415–420 (2002).
    [30]Baba, S., and Akedo, J., Tsukamoto, M., and Abe, N., “Effect of Carrier Gas Species on Ferroelectric Properties of PZT/ Stainless-Steel Fabricated by CO2 Laser-Assisted Aerosol Deposition,” Journal of American Ceramic Society, 89, 1736–1738 (2006).
    [31]Chang, C. C., Lu, P. C., “The effect of annealing on improving the quality of lead zirconate titanate thin films on Pt/SiO2/Si substrates,” Journal of Materials Processing Technology, 95, 128-132 (1999).
    [32]Kwok, C. K., Desu, S. B., “Pyrochlore to perovskite phase transformation in sol-gel derived lead-zirconate-titanate thin films,” Applied Physics Letters, 60, 1430-1432 (1992).
    [33]Babaw, S., and Akedo, J., “Damage-Free and Short Annealing of Pb(Zr,Ti)O3 Thick Films Directly Deposited on Stainless Steel Sheet by Aerosol Deposition with CO2 Laser Radiation,” Journal of American Ceramic Society, 88, 1407–1410 (2005).
    [34]Baba, S., Tsuda, H., and Akedo, J., “Thickness Dependence of Electrical Properties of PZT Films Deposited on Metal Substrates by Laser-Assisted Aerosol Deposition,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 55, 5 (2008).
    [35]Chou, C. C., Tsai, S. D., Tu, W. H., Yeh-Liu, Y. E., Tsai, H. L., “Low-temperature processing of sol-gel derived Pb(Zr,Ti)O3 thick films using CO2 laser annealing,” Journal of Sol-Gel Science Technology, 42, 315–322 (2007).
    [36]Baba, S., Tsuda, H., and Akedo, J., “Laser Irradiation Effect of Film Thickness on the Properties of Aerosol Deposition-Derived PZT Films on Metal Substrate,” IEEE International Symposium on Applications of Ferroelectrics, 450-453 (2007).
    [37]Knite, M., Mezinskis, G., Shebanovs, L., Pedaja, I., Sternbergs, A., “CO2 laser-induced structure changes in lead zirconate titanate Pb(Zr0.58Ti0.42)O3 sol-gel films,” Applied Surface Science 208-209, 378-381 (2003).
    [38]Chou, C. F., Pan, H. C., and Chou, C. C., “Electrical Properties and Microstructures of PbZrTiO3 Thin Films Prepared by Laser Annealing Techniques,” J. Appl. Phys. 41, 6679–6681 (2002).
    [39]Baba, S., Akedo, J., “Thickness dependence of aerosol-deposited Pb(Zr,Ti)O3 films
    on stainless-steel sheet annealed by CO2 laser radiation,” Journal of Crystal Growth, 275, 1247-1252 (2005).
    [40]Kamel, T. M., Kools, F. X. N. M., With, G. d., “Poling of soft piezoceramic PZT,” Journal of the European Ceramic Society, 27, 2471–2479 (2007).
    [41]Phermpornsakul, Y., Muensit, S., “Determination of Piezoelectric and Pyroelectric Coefficients and Thermal Diffusivity of 1-3 PZT/Epoxy Composites,” IEEE Transactions on Dielectrics and Electrical Insulation, 11, 2, 280-285 (2004).
    [42]Buchanan, R. C., and Huang, J., “Pyroelectric and Sensor Properties of Ferroelectric Thin Films for Energy Conversion,” Journal of the European Ceramic Society, 19, 1467-1471 (1999).
    [43]Whatmore, R. W., “Pyroelectric devices and materials,” Rep. Prog. Phys., 49, 1335-1386 (1986).
    [44]郝士明,漫談晶體結構學-從材料學說起,正大印書館 (1997)。
    [45]吳朗,電子陶瓷入門,全欣資訊圖書股份有限公司,159-161 (1992)。
    [46]Moulson, J., Herbert, J. M., Electroceramics: Materials, Properties, Application, Chapman & Hall, 322 (1990).
    [47]Imanaka, Y., Takenouchi, M., Akedo, J., “Ceramic dielectric film for microwave filter deposited at room temperature,” Journal of Crystal Growth, 275, 1313-1319 (2005).
    [48]王宣又,「以氣膠沈積法建立鋯鈦酸鉛厚膜低溫微製程技術」,博士論文,國立台灣大學應用力學研究所,台北 (2008)。
    [49]林三寶編著,雷射原理與應用,全華圖書 (1987)。
    [50]丁勝懋編著,雷射工程導論,中央圖書出版社,第四版 (1998)。
    [51]高堅志,雷射工程導論,文笙書局 (1992)。
    [52]周敏傑、劉決弘、莊運清,雷射加工技術手冊,工業技術研究院機械工業。

    QR CODE