簡易檢索 / 詳目顯示

研究生: 吳漢菘
Han-Song Wu
論文名稱: 無金屬鈣鈦礦薄膜於壓電元件之應用
Metal-Free Perovskite Thin Films for Piezoelectric Device Applications
指導教授: 蔡孟霖
Meng-Lin Tsai
口試委員: 楊伯康
Po-Kang Yang
潘涵琦
Han-Chi Pan
蕭育生
Yu-Sheng Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 鈣鈦礦無鉛壓電人體感測
外文關鍵詞: perovskite, lead-free, piezoelectric, human-body sensing
相關次數: 點閱:257下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機無機金屬鹵化物及純無機金屬鹵化物鈣鈦礦材料由於其優越的吸光及放光特性近年來在太陽能電池、發光元件、光轉換顯示技術及感測元件等領域蓬勃發展。在封裝技術及低維度結構如奈米晶體及二維鈣鈦礦材料的導入下,鈣鈦礦材料之穩定性有非常顯著之提升,充分顯現出其量產商用化之潛力。然而,此類鈣鈦礦材料所含有之有毒鉛金屬,將限制其在未來環境友善的電子元件發展性。雖然許多無鉛之金屬鹵化物鈣鈦礦材料被廣泛研究, 然而 與含鉛之鈣鈦礦材料相比,仍具有穩定性不佳及成本高等挑戰,使得應用性大幅降低。幸運的是,近年來,無金屬鈣鈦礦材料的出現已逐漸受到吸引各界之關注,此材料除了具備無毒、低成本等特性外,更顯示出優異的鐵電及壓電特未來將有助於在記憶體元件、穿戴式電子元件及人體感測元件之發展。在本研究中除了進行 MDABCO-NH4I3無金屬鈣鈦礦薄膜合成及壓電特性鑑定,也探索了將其應用於壓電元件之可能性,展示其具備應用於人體感測及 微電子系統 供電裝置之可能性。


    Organic-inorganic metal halide and inorganic metal halide perovskites have attracted intensive attention in photovoltaics, light emitting devices, color enhancement films, and sensors due to their outstanding light absorption and emitting properties. With the improvement in the polymer encapsulation techniques and the introduction of low-dimensional structures, such as nanocrystals and 2D perovskites. The stabilities of perovskite materials have enhanced significantly to show great potential for practical applications. However, the toxic lead metal in perovskites limits the development of environmentally friendly perovskite-based electronic devices. Although much effort has been devoted to the study of lead-free perovskites, such materials usually suffer from low stability and high cost. Fortunately, metal-free perovskites have been studied to show non-toxic, low-cost, and excellent ferroelectric and piezoelectric properties in recent years, leading to the development of new types of memories, wearable devices, and skin sensors for the next generation. In this study, except that we did the synthesis of MDABCO-NH4I3 metal-free perovskite film and the identification of piezoelectric properties, the possibility of applying it to piezoelectric devices was also explored, proving that it can be use in human body sensing and power supply device for microelectronic systems.

    摘要 0 Abstract 1 第 1 章 緒論 10 1.1 前言 10 1.1.1 壓電效應基本原理 11 1.1.2 壓電材料之性質與壓電常數 12 1.1.3 有機-無機雜化鹵素鈣鈦礦之特性 13 1.2 研究動機與目的 14 第 2 章 文獻回顧與探討 15 2.1 無金屬鈣鈦礦運用於壓電元件的可能性 15 2.2 鹵素鈣鈦礦薄膜製備方法 15 2.2.1 旋轉塗佈法 15 2.2.2 反溶劑法 17 2.2.3 真空輔助法 17 2.2.4 熱鑄法 18 2.2.5 刮刀法 19 2.2.6 噴塗法 20 2.2.7 化學氣相沉積法 21 2.3 鹵素鈣鈦礦薄膜製備條件之影響 22 2.3.1 溫度對薄膜之影響 22 2.3.2 濃度對薄膜之影響 24 2.4 壓電特性之分析方法 25 2.4.1 壓電力顯微鏡 25 2.4.2 振幅響應 26 2.4.3 相位響應 27 2.4.4 壓電響應 28 2.4.5 PFM信號中的非線性壓電響應 28 2.5 鐵電特性之分析方法 30 2.5.1 鐵電特性概述 30 2.5.2 Sawyer-Tower method 31 2.5.3 Double-wave method 32 2.6 壓電元件結構及量測模式 33 2.6.1 夾層元件結構 33 2.6.2 PEDOT:PSS電極 34 2.6.3 壓縮/彎曲量測模式 36 第 3 章 實驗方法 37 3.1 實驗流程 37 3.2 實驗藥品、設備與分析儀器 38 3.2.1 實驗藥品 38 3.2.2 實驗設備 39 3.2.3 分析儀器 41 3.3 無金屬鈣鈦礦薄膜/元件製備 43 3.3.1 基板清洗 43 3.3.2 金屬電極濺鍍 43 3.3.3 PEDOT:PSS薄膜製備 43 3.3.4 無金屬鈣鈦礦薄膜製備 44 3.3.5 PDMS薄膜製備 45 3.3.6 元件極化 45 3.4 無金屬鈣鈦礦壓電元件量測 46 3.4.1 元件電壓及電流輸出量測 46 3.4.2 峰值功率量測 46 3.4.3 頻率相依元件輸出 46 第 4 章 結果與討論 48 4.1 無金屬鈣鈦礦薄膜之X光繞射晶體分析 48 4.2 無金屬鈣鈦礦薄膜之形貌分析 49 4.3 無金屬鈣鈦礦薄膜之壓電特性分析 52 4.4 無金屬鈣鈦礦薄膜之電特性分析 53 4.5 壓電元件之特性分析 55 4.5.1 不同製程參數之元件輸出表現 55 4.5.2 最佳製程參數之元件特性 56 4.5.3 元件於人體感測及人機介面之應用 59 第 5 章 結論與未來展望 62 5.1 結論 62 5.2 未來展望 63 參考文獻 64

    [1] H.-Y. Ye, Y.-Y. Tang, P.-F. Li, W.-Q. Liao, J.-X. Gao, X.-N. Hua, H. Cai, P.-P. Shi, Y.-M. You, and R.-G. Xiong, “Metal-free three-dimensional perovskite ferroelectrics,” Science, vol. 361, no. 6398, pp. 151, 2018.
    [2] H. Wang, H. Liu, Z. Zhang, Z. Liu, Z. Lv, T. Li, W. Ju, H. Li, X. Cai, and H. Han, “Large piezoelectric response in a family of metal-free perovskite ferroelectric compounds from first-principles calculations,” npj Computational Materials, vol. 5, no. 1, pp. 17, 2019/02/06, 2019.
    [3] D. J. W. Allen, N. C. Bristowe, A. L. Goodwin, and H. H. M. Yeung, “Mechanisms for collective inversion-symmetry breaking in dabconium perovskite ferroelectrics,” Journal of Materials Chemistry C, vol. 9, no. 8, pp. 2706-2711, 2021.
    [4] J. Wu, D. Xiao, and J. Zhu, “Potassium–Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries,” Chemical Reviews, vol. 115, no. 7, pp. 2559-2595, 2015/04/08, 2015.
    [5] S. Li, E. Sun, L. Tang, L. Zheng, M. Yang, T. Han, and W. Cao, “Temperature dependence of full matrix material constants of [001]c poled 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal,” Journal of Applied Physics, vol. 123, no. 16, pp. 164102, 2018/04/28, 2018.
    [6] H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, “Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 45, no. 9 B, pp.7405-7408, 2006.
    [7] Q. Zhang, D. Sánchez-Fuentes, R. Desgarceaux, P. Escofet-Majoral, J. Oró-soler, J. Gázquez, G. Larrieu, B. Charlot, A. Gómez, M. Gich, and A. Carretero-Genevrier, “Micro/Nanostructure Engineering of Epitaxial Piezoelectric α-Quartz Thin Films on Silicon,” ACS Applied Materials & Interfaces, vol. 12, no. 4, pp. 4732-4740, 2020/01/29, 2020.
    [8] A. Py-Renaudie, P. Daoust, M. Côté, P. Desjardins, and R. A. Masut, “Ab initio piezoelectric properties of wurtzite ZnO-based alloys: Impact of the $c/a$ cell ratio,” Physical Review Materials, vol. 4, no. 5, pp. 053601, 05/01/, 2020.
    [9] M. K. Mohanta, A. Rawat, Dimple, N. Jena, R. Ahammed, and A. De Sarkar, “Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride,” Nanoscale, vol. 11, no. 45, pp. 21880-21890, 2019.
    [10] Y.-J. Kim, T.-V. Dang, H.-J. Choi, B.-J. Park, J.-H. Eom, H.-A. Song, D. Seol, Y. Kim, S.-H. Shin, J. Nah, and S.-G. Yoon, “Piezoelectric properties of CH3NH3PbI3 perovskite thin films and their applications in piezoelectric generators,” Journal of Materials Chemistry A, vol. 4, no. 3, pp. 756-763, 2016.
    [11] S. Ippili, V. Jella, J.-H. Eom, J. Kim, S. Hong, J.-S. Choi, V.-D. Tran, N. Van Hieu, Y.-J. Kim, H.-J. Kim, and S.-G. Yoon, “An eco-friendly flexible piezoelectric energy harvester that delivers high output performance is based on lead-free MASnI3 films and MASnI3-PVDFcomposite films,” Nano Energy, vol. 57, pp. 911-923, 2019/03/01/, 2019.
    [12] B. Mohammadi, A. A. Yousefi, and S. M. Bellah, “Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films,” Polymer Testing, vol. 26, no. 1, pp. 42-50, 2007/02/01/, 2007.
    [13] E. J. Curry, K. Ke, M. T. Chorsi, K. S. Wrobel, A. N. Miller, A. Patel, I. Kim, J. Feng, L. Yue, Q. Wu, C.-L. Kuo, K. W. H. Lo, C. T. Laurencin, H. Ilies, P. K. Purohit, and T. D. Nguyen, “Biodegradable Piezoelectric Force Sensor,” Proceedings of the National Academy of Sciences, vol. 115, no. 5, pp. 909, 2018.
    [14] Y. Calahorra, A. Datta, J. Famelton, D. Kam, O. Shoseyov, and S. Kar-Narayan, “Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers,” Nanoscale, vol. 10, no. 35, pp. 16812-16821, 2018.
    [15] A. Hänninen, S. Rajala, T. Salpavaara, M. Kellomäki, and S. Tuukkanen, “Piezoelectric Sensitivity of a Layered Film of Chitosan and Cellulose Nanocrystals,” Procedia Engineering, vol. 168, pp. 1176-1179, 2016/01/01/, 2016.
    [16] S. K. Ghosh, P. Adhikary, S. Jana, A. Biswas, V. Sencadas, S. D. Gupta, B. Tudu, and D. Mandal, “Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring,” Nano Energy, vol. 36, pp. 166-175, 2017/06/01/, 2017.
    [17] S. Luo, and W. A. Daoud, “Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design,” Journal ofMaterials Chemistry A, vol. 3, no. 17, pp. 8992-9010, 2015.
    [18] C. A. Bremner, M. Simpson, and W. T. A. Harrison, “New Molecular Perovskites: Cubic C4N2H12·NH4Cl3·H2O and 2-H Hexagonal C6N2H14·NH4Cl3,” Journal of the American Chemical Society, vol. 124, no. 37, pp. 10960-10961, 2002/09/01, 2002.
    [19] M. G. Ehrenreich, Z. Zeng, S. Burger, M. R. Warren, M. W. Gaultois, J.-C. Tan, and G. Kieslich, “Mechanical properties of the ferroelectric metal-free perovskite [MDABCO](NH4)I3,” Chemical Communications, vol. 55, no. 27, pp. 3911-3914, 2019.
    [20] M. Guo, J. Jiang, J. Qian, C. Liu, J. Ma, C.-W. Nan, and Y. Shen, “Flexible Robust and High-Density FeRAM from Array of Organic Ferroelectric Nano-Lamellae by Self-Assembly,” Advanced Science, vol. 6, no. 6, pp. 1801931, 2019/03/01, 2019.
    [21] P. Zhao, H. Wang, L. Wu, L. Chen, Z. Cai, L. Li, and X. Wang, “High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications,” Advanced Energy Materials, vol. 9, no. 17, pp. 1803048, 2019/05/01, 2019.
    [22] Y. Lee, J. Park, S. Cho, Y.-E. Shin, H. Lee, J. Kim, J. Myoung, S. Cho, S. Kang, C. Baig, and H. Ko, “Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range,” ACS Nano, vol. 12, no. 4, pp. 4045-4054, 2018/04/24, 2018.
    [23] A. Petritz, E. Karner-Petritz, T. Uemura, P. Schäffner, T. Araki, B. Stadlober, and T. Sekitani, “Imperceptible energy harvesting device andbiomedical sensor based on ultraflexible ferroelectric transducers and organic diodes,” Nature Communications, vol. 12, no. 1, pp. 2399, 2021/04/23, 2021.
    [24] Y. Park, Y.-E. Shin, J. Park, Y. Lee, M. P. Kim, Y.-R. Kim, S. Na, S. K. Ghosh, and H. Ko, “Ferroelectric Multilayer Nanocomposites with Polarization and Stress Concentration Structures for Enhanced Triboelectric Performances,” ACS Nano, vol. 14, no. 6, pp. 7101-7110, 2020/06/23, 2020.
    [25] J. Kim, T. Moro, J. Kim, S. Yamanaka, I. Murayama, T. Katou, T. Nakayama, M. Takeda, N. Yamada, Y. Nishihata, T. Fukuda, H. Tanaka, T. Sekino, and Y. Kim, “Temperature stability of PIN-PMN-PT ternary ceramics during pyroelectric power generation,” Journal of Alloys and Compounds, vol. 768, pp. 22-27, 2018/11/05/, 2018.
    [26] J.-H. Im, H.-S. Kim, and N.-G. Park, “Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3,” APL Materials, vol. 2, no. 8, pp. 081510, 2014/08/01, 2014.
    [27] S. Wieghold, J.-P. Correa-Baena, L. Nienhaus, S. Sun, K. E. Shulenberger, Z. Liu, J. S. Tresback, S. S. Shin, M. G. Bawendi, and T. Buonassisi, “Precursor Concentration Affects Grain Size, Crystal Orientation, and Local Performance in Mixed-Ion Lead Perovskite Solar Cells,” ACS Applied Energy Materials, vol. 1, no. 12, pp. 6801-6808, 2018/12/24, 2018.
    [28] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta,J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science, vol. 347, no. 6221, pp. 522, 2015.
    [29] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, and J. Huang, “Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers,” Energy & Environmental Science, vol. 8, no. 5, pp. 1544-1550, 2015.
    [30] J. E. Bishop, J. A. Smith, and D. G. Lidzey, “Development of Spray-Coated Perovskite Solar Cells,” ACS Applied Materials & Interfaces, vol. 12, no. 43, pp. 48237-48245, 2020/10/28, 2020.
    [31] H.-D. Kim, S. V. N. Pammi, H.-W. Lee, S. W. Lee, S.-G. Yoon, J. Park, Y. J. Kim, and H.-S. Kim, “Comparative study of hybrid perovskite phototransistors based on CVD-grown and spin-coated MAPbI3,” Journal of Alloys and Compounds, vol. 815, pp. 152404, 2020/01/30/, 2020.
    [32] M. Wang, Y. Feng, J. Bian, H. Liu, and Y. Shi, “A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell,” Chemical Physics Letters, vol. 692, pp. 44-49, 2018/01/16/, 2018.
    [33] M. Li, X. Yan, Z. Kang, X. Liao, Y. Li, X. Zheng, P. Lin, J. Meng, and Y. Zhang, “Enhanced Efficiency and Stability of Perovskite Solar Cells via Anti-Solvent Treatment in Two-Step Deposition Method,” ACS Applied Materials & Interfaces, vol. 9, no. 8, pp. 7224-7231, 2017/03/01, 2017.
    [34] F. X. Xie, D. Zhang, H. Su, X. Ren, K. S. Wong, M. Grätzel, and W. C. H. Choy, “Vacuum-Assisted Thermal Annealing of CH3NH3PbI3 forHighly Stable and Efficient Perovskite Solar Cells,” ACS Nano, vol. 9, no. 1, pp. 639-646, 2015/01/27, 2015.
    [35] X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells,” Science, vol. 353, no. 6294, pp. 58, 2016.
    [36] K. Liao, C. Li, L. Xie, Y. Yuan, S. Wang, Z. Cao, L. Ding, and F. Hao, “Hot-Casting Large-Grain Perovskite Film for Efficient Solar Cells: Film Formation and Device Performance,” Nano-Micro Letters, vol. 12, no. 1, pp. 156, 2020/07/31, 2020.
    [37] Y. Zhong, R. Munir, J. Li, M.-C. Tang, M. R. Niazi, D.-M. Smilgies, K. Zhao, and A. Amassian, “Blade-Coated Hybrid Perovskite Solar Cells with Efficiency > 17%: An In Situ Investigation,” ACS Energy Letters, vol. 3, no. 5, pp. 1078-1085, 2018/05/11, 2018.
    [38] Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, X. Wang, Z. Bi, G. Xu, N. Yuan, and J. Ding, “A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions,” RSC Advances, vol. 5, no. 74, pp. 60562-60569, 2015.
    [39] S. V. N. Pammi, R. Maddaka, V.-D. Tran, J.-H. Eom, V. Pecunia, S. Majumder, M.-D. Kim, and S. G. Yoon, “CVD-deposited hybrid lead halide perovskite films for high-responsivity, self-powered photodetectors with enhanced photo stability under ambient conditions,” Nano Energy, vol. 74, pp. 104872, 2020/08/01/, 2020.
    [40] G. Kim, S. An, S.-K. Hyeong, S.-K. Lee, M. Kim, and N. Shin,“Perovskite Pattern Formation by Chemical Vapor Deposition Using Photolithographically Defined Templates,” Chemistry of Materials, vol. 31, no. 19, pp. 8212-8221, 2019/10/08, 2019.
    [41] V. K. LaMer, and R. H. Dinegar, “Theory, Production and Mechanism of Formation of Monodispersed Hydrosols,” Journal of the American Chemical Society, vol. 72, no. 11, pp. 4847-4854, 1950/11/01, 1950.
    [42] C. Liu, Y.-B. Cheng, and Z. Ge, “Understanding of perovskite crystal growth and film formation in scalable deposition processes,” Chemical Society Reviews, vol. 49, no. 6, pp. 1653-1687, 2020.
    [43] D. G. R. William D. Callister Jr., Materials Science and Engineering, 9th Edition, 2014.
    [44] D. B. Kim, K. H. Park, and Y. S. Cho, “Origin of high piezoelectricity of inorganic halide perovskite thin films and their electromechanical energy-harvesting and physiological current-sensing characteristics,” Energy & Environmental Science, vol. 13, no. 7, pp. 2077-2086, 2020.
    [45] S. V. Kalinin, and D. A. Bonnell, “Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces,” Physical Review B, vol. 65, no. 12, pp. 125408, 03/11/, 2002.
    [46] D. Seol, B. Kim, and Y. Kim, “Non-piezoelectric effects in piezoresponse force microscopy,” Current Applied Physics, vol. 17, no. 5, pp. 661-674, 2017/05/01/, 2017.
    [47] C. Harnagea, A. Pignolet, M. Alexe, and D. Hesse, “Piezoresponse scanning force microscopy: What quantitative information can we reallyget out of piezoresponse measurements on ferroelectric thin films,” Integrated Ferroelectrics, vol. 38, no. 1-4, pp. 23-29, 2001/01/01, 2001.
    [48] R. Proksch, “In-situ piezoresponse force microscopy cantilever mode shape profiling,” Journal of Applied Physics, vol. 118, no. 7, pp. 072011, 2015/08/21, 2015.
    [49] N. Balke, S. Jesse, P. Yu, C. Ben, S. V. Kalinin, and A. Tselev, “Quantification of surface displacements and electromechanical phenomena via dynamic atomic force Nanotechnology, vol. 27, no. 42, pp. 425707, 2016/09/15, 2016.
    [50] D. Liu, C. Tian, C. Ma, L. Luo, Y. Tang, T. Wang, W. Shi, D. Sun, and F. Wang, “Composition, electric-field and temperature induced domain evolution in lead-free Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 solid solutions by piezoresponse force microscopy,” Scripta Materialia, vol. 123, pp. 64-68, 2016/10/01/, 2016.
    [51] https://www.parksystems.com/park-spm-modes/93-dielectric-piezoelectric/230-piezoelectric-force-microscopy-pfm.
    [52] R. Pandey, G. Sb, S. Grover, S. K. Singh, A. Kadam, S. Ogale, U. V. Waghmare, V. R. Rao, and D. Kabra, “Microscopic Origin of Piezoelectricity in Lead-Free Halide Perovskite: Application in Nanogenerator Design,” ACS Energy Letters, vol. 4, no. 5, pp. 1004-1011, 2019/05/10, 2019.
    [53] O. Kwon, D. Seol, H. Qiao, and Y. Kim, “Recent Progress in the Nanoscale Evaluation of Piezoelectric and Ferroelectric Properties via Scanning Probe Microscopy,” Advanced Science, vol. 7, no. 17, pp.1901391, 2020/09/01, 2020.
    [54] S. Hong, J. Woo, H. Shin, J. U. Jeon, Y. E. Pak, E. L. Colla, N. Setter, E. Kim, and K. No, “Principle of ferroelectric domain imaging using atomic force microscope,” Journal of Applied Physics, vol. 89, no. 2, pp. 1377-1386, 2001/01/15, 2000.
    [55] A. Gomez, T. Puig, and X. Obradors, “Diminish electrostatic in piezoresponse force microscopy through longer or ultra-stiff tips,” Applied Surface Science, vol. 439, pp. 577-582, 2018/05/01/, 2018.
    [56] D. Seol, S. Kang, C. Sun, and Y. Kim, “Significance of electrostatic interactions due to surface potential in piezoresponse force microscopy,” Ultramicroscopy, vol. 207, pp. 112839, 2019/12/01/, 2019.
    [57]N. Balke, S. Jesse, A. N. Morozovska, E. Eliseev, D. W. Chung, Y. Kim, L. Adamczyk, R. E. García, N. Dudney, and S. V. Kalinin, “Nanoscale mapping of ion diffusion in a lithium-ion battery cathode,” Nature Nanotechnology, vol. 5, no. 10, pp. 749-754, 2010/10/01, 2010.
    [58] A. N. Morozovska, E. A. Eliseev, A. K. Tagantsev, S. L. Bravina, L.-Q. Chen, and S. V. Kalinin, Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect,” Physical Review B, vol. 83, no. 19, pp. 195313, 05/11/, 2011.
    [59] D. Seol, S. Park, O. V. Varenyk, S. Lee, H. N. Lee, A. N. Morozovska, and Y. Kim, “Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy,” Scientific Reports, vol. 6, no. 1, pp. 30579, 2016/07/28, 2016.[60] Q. N. Chen, Y. Ou, F. Ma, and J. Li, “Mechanisms of electromechanical coupling in strain based scanning probe microscopy,” Applied Physics Letters, vol. 104, no. 24, pp. 242907, 2014/06/16, 2014.
    [61] N. Balke, P. Maksymovych, S. Jesse, A. Herklotz, A. Tselev, C.-B. Eom, I. I. Kravchenko, P. Yu, and S. V. Kalinin, “Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy,” ACS Nano, vol. 9, no. 6, pp. 6484-6492, 2015/06/23, 2015.
    [62] B. Chen, T. Li, Q. Dong, E. Mosconi, J. Song, Z. Chen, Y. Deng, Y. Liu, S. Ducharme, A. Gruverman, F. D. Angelis, and J. Huang, “Large electrostrictive response in lead halide perovskites,” Nature Materials, vol. 17, no. 11, pp. 1020-1026, 2018/11/01, 2018.
    [63] A. Abdollahi, N. Domingo, I. Arias, and G. Catalan, “Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials,” Nature Communications, vol. 10, no. 1, pp. 1266, 2019/03/20, 2019.
    [64] P. Adhikary, S. Garain, and D. Mandal, “The co-operative performance of a hydrated salt assisted sponge like P(VDF-HFP) piezoelectric generator: an effective piezoelectric based energy harvester,” Physical Chemistry Chemical Physics, vol. 17, no. 11, pp. 7275-7281, 2015.
    [65] A. Ahmed, I. A. Goldthorpe, and A. K. Khandani, “Electrically tunable materials for microwave applications,” Applied Physics Reviews, vol. 2, no. 1, pp. 011302, 2015/03/01, 2015.
    [66] M. Stewart, M. G. Cain, and P. Weaver, "Electrical Measurement ofFerroelectric Properties," Characterisation of Ferroelectric Bulk Materials and Thin Films, M. G. Cain, ed., pp. 1-14, Dordrecht: Springer Netherlands, 2014.
    [67] M. Fukunaga, and Y. Noda, “New Technique for Measuring Ferroelectric and Antiferroelectric Hysteresis Loops,” Journal of the Physical Society of Japan, vol. 77, no. 6, pp. 064706, 2008/06/15, 2008.
    [68] S. Martin, B. Gautier, N. Baboux, A. Gruverman, A. Carretero-Genevrier, M. Gich, and A. Gomez, "Characterizing Ferroelectricity with an Atomic Force Microscopy: An All-Around Technique," Electrical Atomic Force Microscopy for Nanoelectronics, U. Celano, ed., pp. 173-203, Cham: Springer International Publishing, 2019.
    [69] Z. Zeng, L. Gai, A. Petitpas, Y. Li, H. Luo, D. Wang, and X. Zhao, “A flexible, sandwich structure piezoelectric energy harvester using PIN-PMN-PT/epoxy 2-2 composite flake for wearable application,” Sensors and Actuators A: Physical, vol. 265, pp. 62-69, 2017/10/01/, 2017.
    [70] V. Jella, S. Ippili, and S.-G. Yoon, “Halide (Cl/Br)-Incorporated Organic–Inorganic Metal Trihalide Perovskite Films: Study and Investigation of Dielectric Properties and Mechanical Energy Harvesting Performance,” ACS Applied Electronic Materials, vol. 2, no. 8, pp. 2579-2590, 2020/08/25, 2020.
    [71] Y. X. Gan, “Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials,” International Journal of Molecular Sciences, vol. 10, no. 12, 2009.
    [72] J. Kim, J.-H. Choi, M. Sung, and W.-R. Yu, “Improved adhesion ofmetal–polymer sandwich composites using a spontaneous polymer grafting process,” Functional Composites and Structures, vol. 1, no. 2, pp. 025004, 2019/06/18, 2019.
    [73] H. K. Lin, S. M. Chiu, T. P. Cho, and J. C. Huang, “Improved bending fatigue behavior of flexible PET/ITO film with thin metallic glass interlayer,” Materials Letters, vol. 113, pp. 182-185, 2013/12/15/, 2013.
    [74] B. Vaagensmith, K. M. Reza, M. D. N. Hasan, H. Elbohy, N. Adhikari, A. Dubey, N. Kantack, E. Gaml, and Q. Qiao, “Environmentally Friendly Plasma-Treated PEDOT:PSS as Electrodes for ITO-Free Perovskite Solar Cells,” ACS Applied Materials & Interfaces, vol. 9, no. 41, pp. 35861-35870, 2017/10/18, 2017.
    [75] E. Hosseini, V. Ozhukil Kollath, and K. Karan, “The key mechanism of conductivity in PEDOT:PSS thin films exposed by anomalous conduction behaviour upon solvent-doping and sulfuric acid post-treatment,” Journal of Materials Chemistry C, vol. 8, no. 12, pp. 3982-3990, 2020.
    [76] S. H. Park, J. Kim, C. E. Park, J. Lee, H. S. Lee, S. Lim, and S. H. Kim, “Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors,” Organic Electronics, vol. 38, pp. 48-54, 2016/11/01/, 2016.
    [77] W.-G. Kim, D.-W. Kim, I.-W. Tcho, J.-K. Kim, M.-S. Kim, and Y.-K. Choi, “Triboelectric Nanogenerator: Structure, Mechanism, and Applications,” ACS Nano, vol. 15, no. 1, pp. 258-287, 2021/01/26, 2021.
    [78] W. Guo, C. Tan, K. Shi, J. Li, X.-X. Wang, B. Sun, X. Huang, Y.-Z.Long, and P. Jiang, “Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring,” Nanoscale, vol. 10, no. 37, pp. 17751-17760, 2018.
    [79] D. Sirbu, H. C. L. Tsui, N. Alsaif, S. Iglesias-Porras, Y. Zhang, M. Wang, M. Liu, A. C. Peacock, P. Docampo, and N. Healy, “Wide-Band-Gap Metal-Free Perovskite for Third-Order Nonlinear Optics,” ACS Photonics, 2021/07/14, 2021.

    無法下載圖示 全文公開日期 2031/10/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE