簡易檢索 / 詳目顯示

研究生: 林彤
Tung Lin
論文名稱: 常壓電漿噴射束於聚甲基丙烯酸甲酯親水化改質與高分子微球接枝用於無電鍍銅製程
Electroless Copper Metallization on PMMA modified by RF-Type APPJ and HEMA microsphere grafting
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 郭俞麟
Yu-Lin Kuo
羅義興
Yi-Hsing Lo
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 120
中文關鍵詞: 常壓電漿噴射束HEMA 微球高分子接枝無電鍍銅
外文關鍵詞: APPJ, HEMA microsphere, Graft polymerization, Electroless plating
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無電鍍製程具有可產生複合鍍層、可用於導體與非導體基材、無須繁複的設備及
    操作簡單等特性,廣泛運用於產業界中,進行無電鍍製程前需先以化學藥劑粗化基材
    的方式,活化表面使後續銅晶種得以沉積於基材表面,其腐蝕液將造成環境汙染且對
    產線人員造成健康的威脅,故本研究將以常壓電漿微球接枝法改質聚甲基丙烯酸甲酯
    (以下簡稱為 PMMA),製程中將不會產生具有毒性之廢液,對環境及工作人員都更
    加友善,希望能達到取代傳統化學藥劑法的目的。
    本實驗的第一部分為將基材以不同激發功率(75W/100W/125W/150W)和不同比例
    的氬氣氧氣混合氣體作為工作氣體之常壓電漿噴射束(APPJ)對 PMMA 進行表面改質,
    透過 OES 分析各電漿中的激發物種,以水接觸角量測其親疏水性及其表面能變化,其
    結果顯示氧氣含量為 1%的氬氧混合氣中的 O 物種及 OH 物種比例較高,水接觸角度
    最低,對基材的改質效果最佳。第二部分是以不同配比的高分子薄膜原液塗佈於經電
    漿改質過之基材,透過電漿改質所產生的親水性官能基團及活化點,與薄膜原液產生
    接枝聚合反應,接著以水接觸角量測其親疏水性及其表面能變化、場發式電子顯微鏡
    觀察其表面形貌、原子力顯微鏡測量粗糙度,傅立葉紅外線光譜分析儀鑑定薄膜中官
    能基與化學鍵結之組成,最後再將經高分子薄膜接枝後基材進行無電鍍銅處理,結果
    顯示僅經電漿改質但無接枝薄膜之基材表面無銅晶種沉積,經高分子薄膜(H7MPC)接
    枝後基材表面產生一層均勻的銅鍍層,接著用 X-射線繞射分析進行鍍層元素分析,
    確認表面無氧化物生成。使用四點探針對表面進行電阻數值測量。以百格測試鍍層的
    附著程度,約達到 3B~4B,附著性優良,達到工業應用的水準。由以上之實驗結果可
    證實常壓電漿微球接枝改質法可有效提高基材的親水性及粗化表面,使無電鍍的銅晶
    種順利沉積於基材表面,並產生品質優良之鍍層。其後續實驗使用 LCP 作為基材,
    經微球接枝後進行無電鍍銅,在 LCP 表面沉積一層緻密的銅鍍層,此技術不僅能用
    於改良傳統的無電鍍前製程,也在 5G 通訊技術中有了應用的可能性。


    The electroless plating process is widely used in the industry because of its notable characteristics, for example, it can produce composite coatings, can be used for conductors and non-conductor substrates without complicated equipment, and it is easy to operate. However, before the electroless plating, it’s necessary to use chromate chemicals to roughen substrate, so that the subsequent copper seed can be deposited on the surface of the substrate, and the corrosive liquid will cause environmental pollution and pose a health threat to the operating staff. In this study we will use the atmospheric pressure plasma jet (APPJ) to modify the surface of the substrate (PMMA) with grafting-polymerization technology, so there will be no toxic waste liquid produced in the process, and it is more friendly to environment and operating staff. We hope this technology can replace the traditional chromate treatment.
    In the first part of the experiment, the PMMA sample were treated at different plasma power (100W/150W/200W) with various Ar /O2 mixtures, O2 contribution in Ar/ O2 mixture is varied from 0.5 to 1%. We used the OES to analysis the species of the plasma, and used water contact angle method to calculate the surface energy and the wettability of the plasma-treated sample. From the results, the plasma which uses 1% O2 /Ar as working gas has the largest quantity of the O species and the OH species, and the sample modified by 1% O2/Ar plasma shows the Best hydrophilicity.
    In the second part, we used spin-coating method to coat the plasma-modified sample with HEMA-Zein solution, and the hydrophilic functional groups and activation points generated by the plasma were grafted with the polymer solution, a thin film was formed on the surface. Then, the hydrophilicity and surface energy of the film were measured by water contact angle, the surface morphology was observed by field electron microscopy (SEM), and the roughness was measured by atomic force microscopy (AFM), the functional groups and chemical bonds in the film were identified by FTIR.
    In the final part, the substrate grafted with the polymer film is subjected to electroless copper plating, The result shows that the surface of the substrate modified by the plasma but without the graft film is deposited without copper, and a uniform copper plating layer is formed on the surface of the substrate after grafting with the polymer film, we use XRD to confirm that no copper oxide or cuprous oxide was formed on the surface, and the resistance value is measured by four-point probe. Then, the adhesion level of the cupper layer is measured by a Cross-cut test, which is about 3B~4B, reaching the level of industrial application.
    From the above experimental results, it can be proved that the HEMA-Zein grafting method can effectively improve the hydrophilicity and roughening surface of the substrate, the electroless copper seed can be smoothly deposited on the surface of the substrate, and the plating layer with nice quality can be produced. In the subsequent experiments, LCP was used as the substrate. After HEMA-Zein grafting, electroless plating was performed. A dense copper plating layer was successfully deposited on the surface of the LCP. It means Polymer film grafting modification can be used not only to improve the traditional electroless plating process, but also possible to apply in 5G communication technology.

    總目錄 中文摘要 I 英文摘要 II 誌謝 IV 總目錄 V 圖索引 IX 表索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 4 2.1無電鍍法 4 2.1.1無電鍍法簡介 4 2.1.2無電鍍前處理 5 2.1.3無電鍍銅鍍液與其反應機制 6 2.1.4無電鍍法應用及優缺點分析 8 2.2電漿簡介 9 2.2.1電漿基本介紹 9 2.2.2電漿原理 11 2.2.3電漿的反應 15 2.2.4電漿的分類 17 2.2.5常壓電漿系統分類 19 2.2.6常壓電漿噴射束激發方式 22 2.2.7常壓電漿噴射束於表面處理之應用 23 2.2.8電漿氣體效應 25 2.2.9電漿物種診斷 31 2.3表面性質 32 2.3.1接觸角 32 2.3.2表面自由能 33 2.4 表面技術結合高分子材料之應用 35 2.4.1表面接枝技術 35 2.4.2 電漿誘導接枝聚合法 36 2.4.3高分子薄膜實例 37 第三章 實驗方法 42 3.1 實驗總覽 42 3.1.1 材料與藥品 43 3.1.2 實驗儀器簡介 44 3.2常壓電漿系統 45 3.2.1常壓電漿噴射束長度測定 46 3.2.2電漿噴射束溫度測定 46 3.2.3常壓電漿噴射束物種測定 46 3.2.4接觸角與表面能計算 46 3.3高分子微球原液製備 50 3.3.1高分子微球前驅物製備 50 3.3.2高分子微球原液塗佈 50 3.3.3遠紅外光譜與微球化學特性測定 50 3.4高分子微球性質測定 51 3.4.1微球薄膜接觸角與表面能計算 51 3.4.2場發射掃描式電子顯微鏡觀察微球薄膜表面形貌 51 3.4.3原子力顯微鏡(AFM)觀察微球薄膜表面粗糙度 51 3.4無電鍍銅晶種沉積 53 3.4.1無電鍍銅製程 53 3.4.2電性測量四點探針 53 3.4.3銅鍍層表面元素分析 54 3.3.4百格測試 54 第四章實驗結果與討論 56 4.1常壓電漿噴射束基本性質測定 56 4.1.1常壓電漿噴射束長度測定 56 4.1.2電漿噴射束溫度測定 57 4.1.3常壓電漿物種測定 59 4.1.4常壓電漿噴射束對表面親水性測定 62 4.1.5 常壓電漿噴射束對基材表面自由能改變測定 63 4.2高分子微球薄膜性質分析 65 4.2.1以FTIR測定載體微球薄膜之化學特性 65 4.2.2以水滴接觸角測定載體微球薄膜親水性 70 4.2.3 載體微球薄膜表面自由能測定 71 4.2.4 以SEM觀察載體微球薄膜之表面特性 73 4.2.5 以AFM觀察載體微球薄膜之表面粗糙度 79 4.3無電鍍銅鍍層性質分析 88 4.3.1無電鍍銅成果與分析評估(圖片) 88 4.3.2四點探針通路測試與微球薄膜電阻係數評估 89 4.3.3 XRD表面鍍層元素分析 90 4.3.4 銅鍍層百格刀附著性測試 91 4.3.5 電漿接枝高分子微球改質法機制圖 93 4.3.5 電漿接枝高分子微球薄膜改質法於無電鍍銅進階應用 94 第五章 結論與未來展望 95 5.1 研究結論 95 5.2未來展望 96 第六章參考文獻 97 圖索引 圖1-1手機金屬天線 2 圖1-2傳統鉻酸法 3 圖2-1放置催化劑鈀之示意圖 6 圖2-2酸(左)鹼(右)對銅沉積表面之比較 6 圖2-3錫鈀膠體溶液示意圖 7 圖2-4電子全面解離化反應 12 圖2-5解離反應 12 圖2-6低壓直流電漿電流與電壓之關係圖 14 圖2-7不同氣體之崩潰電壓與壓力圖 14 圖2-8壓力與電子(Te)、離子(Ti)及中性粒子及(Tn)溫度關係圖 18 圖2-9介電質放電電漿系統圖 19 圖2-10電暈放電電漿 20 圖2-11電漿火炬 20 圖2-12常壓電漿噴射束 21 圖2-13電漿蝕刻示意圖 23 圖2-14電漿活化表面示意圖 24 圖2-15基材親水性提升示意圖 24 圖2-16以常壓電漿噴射束針對大腸桿菌殺菌測試 25 圖2-17不同激發氣體之反應機構與物種 27 圖2-18以OES分析經不同氬氣比例電漿之激發物種光譜圖 28 圖2-19不同比例下氬氮混合氣電漿溫度圖 28 圖2-20不同比例下氬氮混合氣電子密度圖 29 圖2-21經電漿改質後基材之接觸角 30 圖2-22 PEGylated基材經CF4電漿在不同改質時間下機制圖 30 圖2-23 OES基本結構圖 32 圖2-24接觸角示意圖 33 圖2-25電漿接枝聚合反應機構圖 36 圖2-26 2T於PDMS上接枝HEMA/AAc製程圖 37 圖2-27 PDMS接枝HEMA/AAc之SEM影像分析 38 圖2-28電漿改質高分子薄膜法流程圖 38 圖2-29具有區域選擇性之銅鍍層 39 圖2-30 PET纖維改質流程圖 40 圖2-31時效性水接觸角量測 41 圖2-32經染料上色後PET纖維 41 圖3-1實驗總覽 42 圖3-2 RF常壓電漿噴射束裝置總覽圖 45 圖3-3四點探針測量示意圖 53 圖4-1電漿束長度圖 57 圖4-2純氬氣常壓電漿噴射束於基材表面之溫度累積 58 圖4-3 99%氬氣1%氧氣常壓電漿噴射束於基材表面之溫度累積 58 圖4-4 純氬氣OES圖譜 60 圖4-5 99.5%氬氣 0.5%氧氣OES圖譜 60 圖4-6 99%氬氣 1%氧氣OES圖譜 61 圖4-7經電漿改質後試片之水接觸角 63 圖4-8純氬氣環境下改變電漿瓦數對PMMA改質之表面能測定 64 圖4-9不同氣體環境下對PMMA改質之表面能測定 65 圖4-10未添加磷酯高分子微球薄膜之FTIR吸收圖譜 66 圖4-11 HEMA吸收特徵峰圖 66 圖4-12 Zein吸收特徵峰圖 67 圖4-13添加磷酯高分子微球薄膜之FTIR吸收圖譜 67 圖4-14 HEMA吸收特徵峰圖 68 圖4-15 Zein吸收特徵峰圖 68 圖4-16磷酯吸收特徵峰圖 69 圖4-17高分子微球薄膜之水接觸角 70 圖4-18微球薄膜表面自由能 72 圖4-19添加磷酯微球薄膜表面自由能 72 圖4-20 PMMA原材之表面形貌圖 74 圖4-21經常壓電漿改質之表面形貌圖 74 圖4-22 H5薄膜表面形貌圖 75 圖4-23 H7薄膜表面形貌圖 75 圖4-24 H9薄膜表面形貌圖 76 圖4-25 H5MPC薄膜表面形貌圖 76 圖4-26 H7MPC薄膜表面形貌圖 77 圖4-27 H9MPC薄膜表面形貌圖 77 圖4-28磷酯微球於10000倍之形貌圖 78 圖4-29磷酯微球於100000倍之形貌圖 78 圖4-30原始基材之表面俯視圖及側視圖 80 圖4-31經電漿改質基材之表面俯視圖及側視圖 81 圖4-32 H5薄膜之表面俯視圖及側視圖 82 圖4-33 H7薄膜之表面俯視圖及側視圖 83 圖4-34 H9薄膜之表面俯視圖及側視圖 84 圖4-35 H5MPC薄膜之表面俯視圖及側視圖 85 圖4-36 H7MPC薄膜之表面俯視圖及側視圖 86 圖4-37 H9MPC薄膜之表面俯視圖及側視圖 87 圖4-38 PMMA鍍銅成品圖 89 圖4-39四點探針IV曲線圖 90 圖4-40 PMMA基材XRD分析圖 90 圖4-41鍍銅基材XRD分析圖 91 圖4-42經百格刀測試前試片 92 圖4-43經百格刀測試後試片 92 圖4-44電漿接枝高分子微球改質法機制圖 93 圖4-45選擇性鍍層之成品圖 93 圖4-46 LCP基材經改質後無電鍍成品圖 94   表索引 表2-1各種表面處理技術之比較 10 表2-2電漿工作溫度、壓力與種類 18 表2-3 RF-Type與DC-Type電漿之差異 22 表2-4輝光放電時各區之輝光顏色 27 表2-5各基材於不同距離經氧氣電漿改質後之水接觸角 29 表2-6常用液體之表面張力組成極性與非極性 34 表2-7以不同功率進行HMD接枝之XPS結果 40 表3-1實驗材料簡介表 43 表3-2實驗儀器簡表 44 表3-3 OES Peak H species 47 表3-4 OES Peak O species 48 表3-5 OES Peak Ar species 49 表3-6微球原液命名表 52 表3-7 IR特徵峰值對照表 52 表3-8百格測試ASTM等級 55 表4-1電漿參數與離子焰長度對照表 56 表4-2特徵峰值與物種強度表 59

    第六章參考文獻
    1. MID Solutions GmbH official website.
    2. 李能斌、羅韋因、劉鈞泉、徐金來,「化學鍍銅原理、應用及研究展望」,Electroplating & Finishing,第 24 卷,第 10 期 (2005)。
    3. 吳國鼎、方正中,「噴砂製程參數最佳化之研究-以鋁合金為例」, (2014)。
    4. Materialsnet.com,「綠色環保表面處理-六價鉻替代技術之近況發展」,(2007)。
    5. A. Brenner, G. Riddell, J. Res, Nat. Bur. Std,37, 31 (1946).
    6. 胡文斌、劉磊,「難鍍基材化學鍍鎳技術」,北京化學工業出版社,pp. 1-2 (2003)。
    7. K. G. Keong, W. Sha, S. Malinov, “Hardness Evolution of Electroless Nickel-Phosphorus Deposits with Thermal Processing,” Surface and Coaling Technology, pp. 263-274 (2003).
    8. J. Gao, L. Liu, Y. Wu, B. Shen, W. Hu, “Electroless Ni-P-SiC Composite Coatings with Superfine Particles,” Surface and Coatings Technology, pp. 5836-5842 (2006).
    9. A. D. Cheryl, “Electroless copper plating. A review,” Plating and surface finishing, pp.48-55 (1995).
    10. Y. M. Lin, S. C. Yen, “Effects of additives and chelating agents on electroless copper plating,” Applied Surface Science, 178, pp. 116-126 (2001).
    11. F. Awajaa, “Adhesion of polymers,” Polymer Science (2009).
    12. 郭娌禎,「鈀奈米化學鍍鎳活化液之製備與特性研究」,(2006)。
    13. 陳文丁,「結合噴墨列印方式與無電電鍍於軟性基材上製作 RFID 天線」,國防大學應用化學 (1997)。
    14. 秦鐵男,「非金屬材料表面化學鍍中活化工藝的改進及發展方向」,南京工業大學 (2010)。
    15. G. O. Mallory, “Electroless Plating Fundamentals and Applications,” (1990).
    16. A. Brenner, G. Riddell, “E, Inl, Res MS,” (1946).
    17. M. E. Touhami, “Influence of pH Solution on Electroless Copper Plating Using Sodium Hypophosphite as Reducing Agent,” (2012).
    18. M. Panunovic, “Electroless Deposition of Metals and Alloys,” (1998).
    19. 崔國峰、李寧、黎德育,「化學鍍銅在微電子領域中的應用及展望」,電鍍與環保,第 23 卷,第 55 期,pp.5-7 (2003)。
    20. E.G. Hana, E. A. Kima, K. W. Ohb, “Electromagnetic interference shielding effectiveness of electroless Cu-plated PET fabrics,” Synthetic Metals, Vol123, Issue 3, pp. 469–476 (2001).
    21. J. Li, P. A. Kohl, “Complex Chemistry& the Electroless Copper Plating Process,” (2004).
    22. J. Henry, “Electroless (autocatalytic, chemical) plating,” (1995).
    23. H. B. Kegel, W. Petasch, G. Liebel, “Low Pressure Plasma processing in Microelectronics,” pp. 17-35, (1996).
    24. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P, Leprince, “Atmospheric pressure plasmas,” Spectrochimica Acta, Vol.68, pp. 5-30 (2009).
    25. I. H.Hutchinson, “Principles of Plasma Diagnostics,” 2nd, Cambridge University Press, (2002).
    26. 工業材料研究所尖端材料實驗室,「淺談電漿表面處理技術」,工業材料, pp. 82 (1997)。
    27. 莊允中,「電漿技術在半導體製程上之應用與市場分析」,金工產業透析 (2000)。
    28. C. H. Yi, Y. H. Lee, G. Y. Yeom, “Surface and Coatings Technology,” pp. 237-240 (2003).
    29. H. K. Hwang, C. H. Jeong, Y. J. Lee, Y. W. Ko, G. Y. Yeom, “Surface and Coatings Technology,” pp. 705-710 (2004).
    30. 陳克紹、陳素真、洪翠禪、廖淑娟,「表面電漿改質技術在生物醫學工程之應用」,(2009)。
    31. M. R. Yang, K. S. Chen, J. C. Tsai, “The antibacterial activities of hydrophilic modified nonwoven PET,” Materials Sci. and Eng; pp. 167-173 (2002).
    32. 吳耀庭、黃曉鳳、溫俊祥,「電漿表面處理在生醫材料上之應用」,(2004)。
    33. J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, R. F. Hicks, G. S. Selwyn, “Plasma Source Sci.Technol,” (1998).
    34. 劉志宏,「應用實驗技術法與電漿診斷技術探討電漿沉積氟碳膜製程之研究」,中原大學化學工程學系博士論文 (2005)。
    35. 郭福升、洪昭南,“Development of Large-Area Atmospheric,” 2003)。
    36. J. R. Roth, “Industrial Plasma Engineering,” Principles of Physics Publishing, London, vol. 1, (1995).
    37. S. Kanazawa, M. Kogoma, T. Moriwaki, S. Okazaki, “Stable glow plasma atatmospheric pressure,” Journal of Physics D: Applied Physics, vol. 21, pp. 836-840 (1988).
    38. T. Yokoyama, M. Kogoma, T. Moriwaki, S. Okazaki, T. Yokoyama, “The mechanismof the stabilisation of glow plasma at atmospheric pressure,” Journal of Physics D: Applied Physics, vol. 23, pp. 1125-1128 (1990).
    39. 劉志宏、黃駿、許文通、蔡禎輝,張所鋐,「以大氣電漿進行材料表面微米級圖案化之加工技術」,機械工業雜誌,(2008)。
    40. 楊士賢,「以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究」,中原大學化學工程學系碩士論文 (2005)。
    41. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1), 2-30. (2006).
    42. M. I Boulos, “Thermal plasma processing, IEEE Trans,” Plasma Sci, Vol.20, pp.1127-1149 (1998).
    43. H. V. Boening, “Plasma Science and Technology,” Cornell University Press, (1982).
    44. Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement,” International Journal of Adhesion and Adhesives, 27(5), pp. 402-408. (2007).
    45. A. Ananth, M. Sanjeeva, Y. S. Mok, “A dielectric barrier discharge (DBD) plasma reactor: an efficient tool to prepare novel RuO2 nanorods,” (2013).
    46. J. S. Chang, P. A. Lawless, T. Yamamoto, “Corona Discharge Process,” IEEE transactions on plasma science, vol. 19, no. 6, pp. 1152 (1991).
    47. M. Hur, S. H. Hong, “Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod- and well-type cathodes,” Journal of Physics D: Applied Physics, vol. 35, pp. 1946-1954 (2002).
    48. 林仁輝,「行政院原子能委員會委託研究計畫研究報告電漿熱流分析研究」,(2010)。
    49. H. S. Uhm, J. P. Lim, “sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet,” (2007).
    50. K. Pochner, W. Neff, R. Lebert, “Atmospheric pressure gas discharges for surface treatment,” Surface and Coatings Technology, 74, pp. 394-398. (1995).
    51. K. Niemi, S. Reuter, L. Schaper, N. Knake, V. SchulzvonderGathen, T. Gans, “Diagnostics on an atmospheric pressure plasma jet,” IOPSCience, Vol 71, pp. (2007).
    52. J. Chen, “Surface Modification of Flexible Substrates using Low-Temperature Atmospheric Pressure Jet for Grafting Thermosensitive Polymer,” National Taiwan University of Science and Technology (2012).
    53. 高正雄,「高分子材料的電漿表面處理」,電漿化學,(1999)。
    54. J. P. Chang, “Principles of Plasma Processing,” Lecture notes, MIT, (1996).
    55. M. C. Kim, T. Masuoka, “A study on the degradation property of a hydrophilic polycarbonate film treated by inductively coupled plasma using CO2 as reactive gas,” Applied Surface Science, 255(8), pp. 4684-4688 (2009).
    56. J. K. Evju, P. B. Howell, L. E. Locascio, M. J. Tarlov, J. J. Hickman, “Atmospheric pressure microplasmas for modifying sealed microfluid devices,” Appl Phys. Lett, (2004).
    57. Y. L. Kuo, K. H. Chang, T. S. Hung, K. S. Chen, N. Inagaki, “Atmospheric-pressure plasma treatment on polystyrene for the photo-induced grafting polymerization of N-isopropylacrylamide,” Thin Solid Films, Vol.518, pp. 7568–7573 (2010).
    58. S. Schneider, J. W. Lackmann, D. Ellerweg, B, Denis, F. Narberhaus, J. E. Bandow, J. Benedikt, “The role of VUV radiation in the inactivation of bacteria with an atmospheric pressure plasma jet,” Plasma Processes and Polymers, pp. 561-568 (2012).
    59. T. Takamatsu, K. Uehara, Y. Sasaki, H. Miyahara, Y. Matsumura, A. Iwasawa, A. Okino, “Investigation of reactive species using various gas plasmas,” RSC Advances, 4(75), pp. 39901-39905. (2014).
    60. S. Kanazawa, “Study of The Plasma Surface Modification and The Preparation for Electric Conductivity of Polyester Fabric,” J. Phys. D Appl. Phys.,vol.21, pp. 836 (1988).
    61. A. Barkhordari, A. Ganjovi1, I. Mirzaei, A. Falahat, M. N. Rostami, Ravari, “A pulsed plasma jet with the various Ar/N2 mixtures,” (2017).
    62. K. S. Chena, S. J. Changa, S. H. Hsua, H. R. Linb, S. C. Chenc, “The glow and no glow zone effect on surface wettability modified in O2 or hexamethyldisilazane cold plasma treatment,” (2008).
    63. S. Peng, Y. C. Ma, “Fabrication of hydrophilic and oil-repellent surface via CF4 plasma treatment,” (2018).
    64. OXFORD公司,「Foundry-Master X’Pert光譜分光儀技術手冊」,(1990)。
    65. D. Quéré, “Rough ideas on wetting. Physica A: Statistical Mechanics and its Applications,” 313(1-2), pp. 32-46 (2002).
    66. F. Grzegorzewski, S. Rohn, A. Quade, K. Schröder, J. Ehlbeck, O. Schlüter, L. W. Kroh, “Reaction chemistry of 1,4-benzopyrone derivates in non-equilibrium low-temperature plasmas. Plasma Process,” Polym, 466 (2010).
    67. C. Rulison, “So you want to measure surface energy. A tutorial designed to provide basic understanding of the concept solid surface energy, and its many complications,” TN306/CR, 1-16. (1999).
    68. S. J. Clarson, J. A. Semlyen, “Siloxane polymers. Prentice Hall,” (1993).
    69. S. H. Jung, S. M. Park, S. H. Park, S. D. Kim, “Surface modification of fine powders by atmospheric pressure plasma in a circulating fluidized bed reactor,” Industrial & engineering chemistry research, 43(18), pp. 5483-5488 (2004).
    70. T. A. Sergeyeva, H. Matuschewski, S. A. Piletsky, J. Bendig, U. Schedler, M. Ulbricht, “Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization,” Journal of Chromatography A, 907(1-2), pp. 89-99. (2001).
    71. I. Gancarz, G. Poźniak, M. Bryjak, A. Frankiewicz, “Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid,” Acta polymerica, 50(9), pp. 317-326 (1999).
    72. K. Johnsen, S. Kirkhorn, K. Olafsen, K. Redford, A. & Stori, “Modification of polyolefin surfaces by plasma‐induced grafting,” Journal of applied polymer science, 59(10), pp. 1651-1657. (1996).
    73. T. Yokoyama, M. Kogoma, T. Moriwaki, S. Okazaki, “The mechanism of the stabilisation of glow plasma at atmospheric pressure,” Journal of Physics D: Applied Physics, 23(8), pp. 1125. (1990).
    74. A. Karkhaneh, H Mirzadeh, A. R. Ghaffariyeh, “Simultaneous graft copolymerization of 2‐hydroxyethyl methacrylate and acrylic acid onto polydimethylsiloxane surfaces using a two‐step plasma treatment,” Journal of applied polymer science, 105(4), pp. 2208-2217 (2007).
    75. G. S. Chen, S. T. Chen, Y. W. Chen, Y. C. Hsu, “Site-Selective Electroless Metallization on Porous Organosilica Films by Multisurface Modification of Alkyl Monolayer and Vacuum Plasma,” (2013).
    76. X. Zheng, G. Chen, Z. X. Zhang, J. Beem, S. Massey, J. F. Huang, “A two-step process for surface modification of poly(ethylene terephthalate) fabrics by Ar/O2 plasma-induced facile polymerization at ambient conditions,” (2013).
    77. 傅可棨、郭俞麟,「常壓電漿噴射束於聚二甲基矽氧烷親水化與高分子複合型藥物微球薄膜製備」,(2018)。
    78. N. Benissad, C. Boisse-Laporte, C. Vallée, A. Granier, A. Goullet, “Silicon dioxide deposition in a microwave plasma reactor,” Surface and Coatings Technology, 116, pp. 868-873 (1999).
    79. J. K. Clay, S. P. Speakman, G. A. J. Amaratunga, S. R .P. Silva, “Characterization of a‐C: H: N deposition from CH4/N2 RF plasmas using optical emission spectroscopy,” Journal of applied physics, 79(9), pp. 7227-7233 (1996).
    80. M. Andrieux, J. M. Badie, M. Ducarroir, L. Thomas, “Optical emission spectroscopy of RF and microwave plasmas used for chemical vapor deposition in the Si-CH-Ar system,” In Annales de chimie-Sciences des materiaux, Vol. 5, No. 23, pp. 743-752 (1998).
    81. O. B. Cho, S. Lao, L. Sha, J. P. Chang, “Spectroscopic study of plasma using zirconium tetra-tert-butoxide for the plasma enhanced chemical vapor deposition of zirconium oxide,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19(6), pp. 2751-2761 (2001).
    82. E .A. H. Timmermans, J. Jonkers, A. Rodero, M. C. Quintero, A. Sola, “The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 2: Plasmas at reduced pressure,” Spectrochimica Acta Part B: Atomic Spectroscopy, 54(7), pp.1085-1098. (1999).
    83. A. Bogaerts, A. Quentmeier, N. Jakubowski, R. Gijbels, “Plasma diagnostics of an analytical Grimm-type glow discharge in argon and in neon: Langmuir probe and optical emission spectrometry measurements,” Spectrochimica Acta Part B: Atomic Spectroscopy, 50(11), pp. 1337-1349 (1995).
    84. B. Kułakowska-Pawlak, W. Żyrnicki, K. Miernik, J. Walkowicz, “Optical emission diagnostics of the linear magnetron sputtering discharge,” Surface and Coatings Technology, 116, pp. 1076-1082 (1999).
    85. N. Renevier, T. Czerwiec, P. Collignon, J.Michel, “Diagnostic of arc discharges for plasma nitriding by optical emission spectroscopy,” Surface and Coatings Technology, 98(1-3), pp. 1400-1405 (1998).
    86. B. Dhananjay, C. Khan-Malek, “Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments,” Microelectronic engineering 83.4-9, pp. 1277-1279 (2006).
    87. K. L. Mittal, “Adhesion measurement of thin films. Active and Passive Electronic Components,” 3(1), pp. 21-42 (1976).

    無法下載圖示 全文公開日期 2024/08/07 (校內網路)
    全文公開日期 2024/08/07 (校外網路)
    全文公開日期 2024/08/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE