簡易檢索 / 詳目顯示

研究生: 藍士哲
Shih-Che Lan
論文名稱: 具自耦電感及漣波消除之電流饋入式升壓轉換器
Coupled Inductor Based Current-fed Boost Converter with Ripple Cancellation
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 林瑞禮
Ray-Lee Lin
楊宗銘
Chung-Ming Young
榮世良
Brady Jung
劉光華
Kwang-Hwa Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 81
中文關鍵詞: 高電壓增益非電解電容永續能源轉換台灣科技大學整流電路倍壓電路
外文關鍵詞: high voltage gain, non-electrolytic capacitor, sustainable energy power conversion, Taiwan Tech Rectifier, voltage doubler
相關次數: 點閱:282下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於能源短缺,再生能源漸漸被重視,其中燃料電池和太陽能電池被視為有發展潛力的能源,然而兩者所產生的輸出電壓低且變化範圍大,所以無法直接提供一般電器使用。 因此,需要一級高昇壓轉換器將低電壓提升至穩定的高壓(200V or 380V)輸出。傳統的Boost轉換器,卻有電壓增益的限制及需要較大的責任週期(Duty cycle)的問題。為了克服此問題,本論文提出新式非隔型升壓電源轉換器,藉由堆疊Three-State Switching Cell Boost轉換器以及雙繞組倍壓整流電路等技術達成高升壓輸出的需求。所提出之電路,除了有高轉換比、連續電流、寬輸入電壓範圍及低開關電壓應力外,其中雙繞組倍壓整流電路的輸出電壓漣波消除能力優於傳統的倍壓整流電路。所以,小電容值的非電解電容可以被使用,且整流二極體的零電流切換可以被達成。最後,實作電路與理論相互驗證。


    Stacking a two-winding voltage doubler rectifier on top of a three-state switching cell boost derived converter, a non-isolated high step-up converter is proposed. In addition to having high conversion ratio, non-pulsating input current, wide input range operation, low output voltage-ripple, and low voltage stress on switch and diode, the proposed converter has additional output voltage-ripple reduction advantage over the conventional voltage doubler rectifier. As a result, smaller non-electrolytic output capacitors can be used and thus zero-current switching of rectifier diode can be achieved. Besides, the operational principle and circuit analysis, several prototypes with 100 kHz, 36-75V, 380V/380W output are implemented and tested to demonstrate their feasibility.

    Abstract I Acknowledgements II Table of Contents III List of Figures V List of Table VIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Organization of the thesis 5 Chapter 2 Boost Converter Stacking with Two-Winding Voltage Doubler (BC2WVD) 7 2.1 Introduction 7 2.2 Operational Principle 8 2.3 Circuit Analysis 13 2.3.1 Voltage across C1, C2 and C3 13 2.3.2 Voltage gain 13 2.3.3 Current ripple of C1 and C2 14 2.3.4 Voltage ripple cancellation 15 2.4 Circuit Design 16 2.4.1 Transformer 17 2.4.2 Input inductor 20 2.4.3 Clamping capacitor Cc and output capacitor C1, C2 and C3 21 2.4.4 Main switches Q1 and Q2 22 2.4.5 Clamping diodes D1 and D2 22 2.4.6 Rectifier diode Ds1 and Ds2 22 2.5 Comparison of 2WVD and CVD 22 2.6 Experimental Results 24 2.6.1 Experimental results of BC2WVD 24 2.6.2 The comparison between the BC2WVD and the BCCVD 27 2.7 Summary 28 Chapter 3 Boost Converter Stacking with Two-Winding Voltage Doubler with ZCS (BC2WVD with ZCS) 29 3.1 Introduction 29 3.2 Operational Principle 29 3.3 Circuit Analysis 37 3.3.1 ZCS condition 37 3.4 Circuit Design 39 3.5 Comparison of BC2WVD with ZCS and BC2WVD 39 3.5.1 The current of D1 and D2 39 3.6 Experimental Results 42 3.6.1 Experimental results of BC2WVD with ZCS 42 3.6.2 The comparison between the BC2WVD with ZCS and BC2WVD 46 3.7 Summary 50 Chapter 4 Conclusions and Future Research 51 4.1 Conclusions 51 4.2 Future Research 52 Appendix: Semiconductors Losses Breakdown 57 Vita 72

    [1] E. Santi, D. Franzoni, A. Monti, D. Patterson, F. Ponci, and N. Barry, “A Fuel Cell Based Domestic Uninterruptible Power Supply,” in Proceedings of the Applied Power Electronics Conference and Exposition, 2002, pp. 605-613.
    [2] W. Choi, P. N. Enjeti, and J. W. Howze, “Development of an Equivalent Circuit Model of a Fuel Cell to Evaluate the Effects of Inverter Ripple Current,” in Proceedings of the Applied Power Electronics Conference and Exposition, 2004, pp. 355-361.
    [3] G. Fontes, C. Turpin, R. Saisset, T. Meynard, and S. Astier, “Interactions Between Fuel Cells and Power Converters Influence of Current Harmonics on a Fuel Cell stack,” in Proceedings of the Power Electronics Specialists Conference, 2004, pp. 4729-4735
    [4] S. Jemei, D. Hissel, M.-C. Pera, and J.M. Kauffmann, “A New Modeling Approach of Embedded Fuel-Cell Power Generators Based on Artificial Neural Network,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 437-447, Jan 2008.
    [5] J. M. Correa, F. A. Farret, L. N. Canha, and M. G. Simoes, “An Electrochemical-Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach,” IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 1103–1112, Oct. 2004.
    [6] X. Kong and A. M. Khambadkone, “Analysis and Implementation of a High Efficiency, Interleaved Current-Fed Full Bridge Converter for Fuel Cell System,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 543–550, Mar.2007
    [7] S. Pradhan, S. K. Mazumder, J. Hartvigsen, and M. Hollist, “Effects of Electrical Feedbacks on Planar Solid-Oxide Fuel Cell,” ASME Journal of Fuel Cell Science and Technology, vol. 4, no. 2, pp. 154–166, May 2007.
    [8] W. Choi, P. N. Enjeti, and J. W. Howze, “Development of an Equivalent Circuit Model of a Fuel Cell to Evaluate the Effects of Inverter Ripple Current,” in Proceedings of the Applied Power Electronics Conference and Exposition, 2004, pp. 355–361.
    [9] G. Fontes, C. Turpin, S. Astier, and T. A. Meynard, “Interactions Between Fuel Cells and Power Converters: Influence of Current Harmonics on a Fuel Cell Stack,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 670–678, Mar. 2007
    [10] S. K. Mazumder, S. K. Pradhan, J. Hartvigsen, M. R. von Spakovsky, and D. F. Rancruel, “Effects of Battery Buffering on the Post-Load-Transient Performance of a PSOFC,” IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 457–466, June 2007.
    [11] R.W. Erickson and D. Maksimovic: Fundamentals of Power Electronics, 2nd ed. New York, USA: Kluwer Academic Publishers, 2001.
    [12] D. Maksimovic and S. Cuk, “Switching Converters with Wide DC Conversion Range,’’ IEEE Transactions on Power Electronics, vol. 6, no. 1, pp. 151-157, June 1991.
    [13] L. Huber and M. M. Jovanovic, “A Design Approach for Server Power Supplies for Networking,” in Proceedings of the Applied Power Electronics Conference and Exposition, 2000, pp. 1163–1169.
    [14] L. Barreto, E. Coelho, V. Farias, L. de Freitas, and J. Vieira, J.B., “An Optimal Lossless Commutation Quadratic PWM Boost Converter,” in Proceedings of the Applied Power Electronics Conference and Exposition, 2002, pp. 624-629.
    [15] Y.R. Novaes, A. Rufer and I. Barbi, “A New Quadratic, Three-Level, DC-DC Converter Suitable for Fuel Cell Application,” in Proceedings of the Power Conversion Conference – Nagoya, 2007, pp. 601 -607.
    [16] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-Up Switching-Mode Converter with High Voltage Gain Using a Switched-Capacitor Circuit,” IEEE Transactions Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 8, pp. 1098–1102, Aug. 2003.
    [17] F. L. Luo and H. Ye, “Positive Output Multiple-Lift Push–Pull Switched-Capacitor Luo-Converters,” IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 594–602, June 2004.
    [18] R.-J. Wai, W.-H. Wang, and C.-Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 240–250, Jan. 2008.
    [19] Q. Zhao and F. C. Lee, “High-Efficiency, High Step-Up DC–DC Converters,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 65–73, Jan. 2003.
    [20] K. C. Tseng and T. J. Liang, “Novel High-Efficiency Step-Up Converter,” IEE Transactions on Electric Power Applications, vol. 151, no. 2, pp. 182–190, Mar. 2004.
    [21] J.W. Baek, M.H. Ryoo, T.J. Kim, D.W. Yoo, and J.S. Kim, “High Boost Converter Using Voltage Multiplier,” in Industrial Electronics Society, 2005, pp. 567-572.
    [22] C. E. A. Silva, R. P. T. Bascope, and D. S. Oliveira, “Proposal of a New High Step-Up Converter for UPS Applications,” in IEEE International Symposium on Industrial Electronics, 2006, pp. 1288–1292.
    [23] G. V. T. Bascopé and I. Barbi, “Generation of a Family of Non-isolated DC–DC PWM Converters Using New Three-State Switching Cells,” in Proceedings of the Power Electronics Specialists Conference, 2000, pp. 858–863.
    [24] S. V. Araújo, R. P. Torrico-Bascopé, and G. V. Torrico-Bascopé, “Highly Efficient High Step-Up Converter for Fuel-Cell Power Processing Based on Three-State Commutation Cell,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 1987–1997, June 2010.
    [25] C.-S.Leu and P.-Y-Huang, “A Novel Voltage Doubler Rectifier for High Output Voltage Applications,” in International Power Electronics Conference, 2010, pp 2082-2085.
    [26] C.-S.Leu and P.-Y-Huang, “Current Ripple Reduction Power Conversion Circuits,” U. S. Patent Application 20120051108, March 1, 2012.
    [27] TDK’s European Website for Electronic Components & Systems [Online]. Available: http://www.tdk.co.jp/tefe02/e141.pdf
    [28] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed, USA: John Wiley & Sons, Inc, 2003.

    QR CODE