簡易檢索 / 詳目顯示

研究生: 陳泓霖
Hong-Lin Chen
論文名稱: 基於Cockcroft-Walton倍壓電路具功率因數修正之新型三相-單相高昇壓矩陣式轉換器
A Novel Three-Phase to Single-Phase High Step-Up AC-DC Matrix Converter Based on Cockcroft-Walton Voltage Multiplier with PFC
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 林瑞禮
Ray-Lee Lin
鄧人豪
Jen-Hao Teng
呂錦山
Ching-Shan Leu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 70
中文關鍵詞: CW倍壓電路矩陣式轉換器交流-直流轉換器功率因數修正。
外文關鍵詞: Cockcroft-Walton voltage multiplier, matrix converter, ac-dc converter, power factor correction (PFC).
相關次數: 點閱:175下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一基於Cockcroft-Walton (CW) 倍壓電路具功率因數修正之新型三相轉單相高昇壓矩陣式轉換器。此轉換器在CW倍壓電路輸入端結合一昇壓型的三相矩陣式轉換器,其電路架構是由三個昇壓電感器及六組雙向電力開關所組成。本文提出之轉換器利用功率因數修正之技術使轉換器具有單位功因、低失真、近似正弦波之輸入電流,以及高的電壓增益。此外,此三相矩陣式轉換器產生一頻率及大小可調之電流注入至CW倍壓電路,如此可以藉由提高此注入電流之交替頻率來降低輸出電壓之連波,相較於傳統使用單相交流電源之CW倍壓電路,本文提出之轉換器更適合於高電壓高功率之應用。本論文將詳細介紹此轉換器之電路操作原理、元件設計及控制策略,並在最後提出模擬及實作之結果以驗證本轉換器之可行性。


    This thesis proposes a novel three-phase to single-phase high step-up ac-dc matrix converter based on Cockcroft-Walton voltage multiplier (CWVM) with power factor correction (PFC) for high voltage dc applications. The proposed converter inserts a boost-type matrix converter, which is formed by three boost inductors and six bidirectional switches, between a three-phase ac source and a CWVM. By using this topology associated with power factor correction technique, the proposed converter not only achieves almost unity power factor and sinusoidal input currents with low distortion but also obtains high voltage gain at the output end. Moreover, the matrix converter generates an adjustable frequency and adjustable amplitude current which injects into the CWVM to regulate the dc output voltage and smooth its ripple. With this flexible injection current, the performance of the proposed converter is superior to the conventional CWVM, which is usually energized by a single-phase ac source. Sourced by three-phase ac source, the proposed converter is quite suitable for high-power and high-voltage applications. The operation principle, control strategy and design considerations of the proposed converter are detailed in this paper. Finally, simulated and experimental results demonstrate the claims and validity of the proposed converter.

    摘要 I Abstract II Acknowledgement III Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Circuit Description 4 1.3 Thesis Outline 5 Chapter 2 The Proposed Three-Phase to Single-Phase High Step-Up Converter Based on CWVM with PFC 8 2.1 Introduction 8 2.1.1 The Cockcroft-Walton Voltage Multiplier 8 2.1.2 Three Phase Power Factor Corrector 9 2.2 Circuit Operation Principle 13 2.3 Design Considerations 22 2.3.1 Capacitor Voltage stress 22 2.3.2 Voltage and Current Stresses on Switches and Diodes 23 2.3.3 Boost Inductor Design 23 2.3.4 Output Capacitance Design 24 2.4 Control Strategy 25 Chapter 3 Hardware Configuration and Software Programming 31 3.1 Introduction 31 3.2 Hardware Configuration 32 3.3 Software Programming 34 3.3.1 Digital Signal Processor (TMS320F28069) 34 3.3.2 Analog/Digital Conversion Design 35 3.3.3 Program Flowchart of the Proposed Converter 36 Chapter 4 Simulation and Experimental Results 43 4.1 Introduction 43 4.2 Development and Realization of the Simulation System 44 4.3 Simulation and Experimental Results 46 Chapter 5 Conclusions 56 5.1Conclusion 56 5.2 Recommendations and Future Work 56 References 58 Appendix A 1 Appendix B 1 Appendix C 1

    [1] M. D. Bellar, E. H. Watanabe, and A. C. Mesquita, “Analysis of the dynamic and steady-state performance of Cockcroft-Walton cascade rectifiers,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 526–534, Jul. 1992.

    [2] C. Iannello, S. Luo, and I. Batarseh, “Full bridge ZCS PWM converter for high-voltage high-power applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 2, pp. 515-526, Apr. 2002.

    [3] J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, and A. Valderrabano, “A DC-DC multilevel boost converter,” IET Power Electron., vol. 3, no. 1, pp. 129-137, Jan. 2010.

    [4] H. J. Chung, “A CW CO2 laser using a high-voltage dc-dc converter with resonant inverter and Cockcroft-Walton multiplier,” Opt. Laser Technol., vol. 38, no. 8, pp. 577–584, Nov. 2006.

    [5] Y. Xue, L. Chang, S. B. Kjar, J. Bordonau, and T. Shimzu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305–1314, Sep. 2004.

    [6] L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless dc-dc converters with high step-up voltage gain,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144–3152, Aug. 2009.

    [7] W. Li and X. He, “Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1239–1250, Apr. 2011.

    [8] D. Zhou, A. Pietkiewicz, and S. Cuk, “A three-switch high-voltage converter,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 177–183, Jan. 1999.

    [9] J. Tanaka, and I. Yuzurihara, “The high frequency drive of a new multi-stage rectifier circuit,” in Proc. IEEE Power Electronics Specialists Conf., pp. 1031–1037, Apr. 1988.

    [10] J. F. Chen, R. Y. Chen, and T. J. Liang, “Study and Implementation of a single-stage current-fed boost PFC converter with ZCS for high voltage applications,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 379–386, Jan. 2008.

    [11] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality ac-dc converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641–660, Jun. 2004.

    [12] F. Hwang, Y. Shen, and S. H. Jayaram, “Low-ripple compact high-voltage DC power supply,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1139–1145, Sep./Oct. 2006.

    [13] I. C. Kobougias, and E. C. Tatakis, “Optimal design of a half-wave Cockcroft–Walton voltage multiplier with minimum total capacitance,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2460–2468, Sep. 2010.

    [14] S. M. Sbenaty, and C. A. Ventrice, “High voltage DC shifted RF switch-mode power supply system design for gas lasers excitation,” in Proc. Appl. Power Electron. Conf. Expo., pp. 173–177, Mar. 1991.

    [15] P. G. Maranesi, F. Raina, M. Riva, and G. Volpi, “Accurate and nimble forecast of the HV source dynamics,” in Proc. IEEE Power Electron. Spec. Conf., pp. 539–543, Jun. 2000.

    [16] F. Belloni, P. Maranesi , and M. Riva, “Parameters optimization for improved dynamics of voltage multipliers for space,” in Proc. IEEE Power Electron. Spec. Conf., pp. 493–443, Jun. 2004.

    [17] E. Chu, L. Gamage, M. Ishitobi, E. Hiraki, and M. Nakaoka, “Improved transient and steady-state performance of series resonant ZCS high-frequency inverter-coupled voltage multiplier converter with dual mode PFM control scheme,” J. Electr. Eng. Jpn., vol. 149, no. 4, pp. 60–72, Dec. 2004.

    [18] Z. Cao, M. Hu, N. Frohleke, and J. Bocker, “Modeling and control design for a very low-frequency high-voltage test system,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1068–1077, Apr. 2010.

    [19] M. M. Weiner, “Analysis of Cockcroft-Walton voltage multipliers with an arbitrary number of stages,” Rev. Sci. Instrum., vol. 40, no. 2, pp. 300–333, Feb. 1969.

    [20] E. Kuffel and W. S. Zaengl, High Voltage Engineering Fundamentals. New York: Pergamon International Library, 1984, ch. 2.

    [21] M. Khalifa, “High-voltage engineering, theory and practice,” in Electrical Engineering and Electronics, A series of Reference Books and Textbooks, vol. 63. New York: Marcel Decker, Mar. 1990, ch. 6.

    [22] S. D. Johnson, A. F. Witulski, and R. W. Erickson, “Comparison of resonant topologies in high-voltage DC applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 24, no. 3, pp. 263–274, May 1988.

    [23] K. S. Muhammad, A. M. Omar, and S. Mekhilef, “Digital control of high dc voltage converter based on Cockcroft Walton voltage multiplier circuit,” in Proc. IEEE TENCON, pp. 1–4, Nov. 2005.

    [24] K. S. Muhammad, A. M. Omar, and S. Mekhilef, “An improved topology of digitally-controlled single-phase single-stage high dc voltage converter,” in Proc. IEEE PESC, pp. 1–5, Jun. 2006.

    [25] N. A. Rahim, and A. M. Omar, “Three-phase single-stage high-voltage dc converter,” in Proc. IEE Transm. Distrib., vol. 149, no. 5, pp. 505–509, Sep. 2002.

    [26] A. Shenkman, Y. Berkovich, and B. Axelrod, “Structures of transformerless step-up and step-down controlled rectifiers,” IET Power Electron., vol. 1, no. 2, pp. 245–254, Jun. 2008.

    [27] S. Iqbal, “A three-phase symmetrical multistage voltage multiplier,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 30–33, Mar. 2005.

    [28] J. Sun, X. Ding, M. Nakaoka, and H. Takano, “Series resonant ZCS-PFM dc-dc converter with multistage rectified voltage multiplier and dual-mode PFM control scheme for medical-use high-voltage X-ray power generator,” in Proc. IEE Electr. Power Appl., vol. 147, no. 6, pp. 527–534, Nov. 2000.

    [29] K. Ogura, E. Chu, M. Ishitobi, M. Nakamura, and M. Nakaoka, “Inductor snubber-assisted series resonant ZCS-PFM high frequency inverter link dc-dc converter with voltage multiplier,” in Proc. PCC, pp. 110–114, Apr. 2002.

    [30] C. M. Young, M. H. Chen, S. H. Yeh, and K. H. Yuo, “A single-phase single-stage high step-up ac-dc matrix converter based on Cockcroft-Walton voltage multiplier with PFC,” IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4894–4905, Dec. 2012.

    [31] IEEE Recommended Practices and Requirements for Harmonics Control in Electric Power Systems, IEEE Std. 519, 1992.

    [32] Electromagnetic Compatibility (EMC)-Part 3: Limits-Section 2: Limits for Harmonic Current Emissions (Equipment Input Current <16 A Per Phase), IEC1000-3-2 Doc, 1995.

    [33] Draft-Revision of Publication IEC 555-2: Harmonics, Equipment for Connection to the Public Low Voltage Supply System, IEC SC 77A, 1990.

    [34] E. Ismail, and R. W. Erickson, “A single transistor three phase resonant switch for high quality rectification,” in Proc. IEEE PESC, vol. 2, pp. 1341-1351, Jul. 1992.

    [35] M. Hengchun, C. Y. Lee, D. Boroyevich, and S. Hiti, “Review high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, Aug. 1997.

    [36] A. H. Bhat, and P. Agarwal, “Three-phase, power quality improvement ac/dc converters,” Electric Power System Research, vol. 78, pp. 276–289, Feb. 2008.

    [37] F. Zare and A. Nami, “A new random current control technique for a single-phase inverter with bipolar and unipolar modulations,” in Proc. IEEE PCC 2007, pp. 149–156.

    [38] L. Malesani, L. Rossetto, and A. Zuccato, “Digital adaptive hysteresis current control with clocked commutations and wide operating range,” IEEE Trans. Ind. Appl., vol. 32, no. 2, pp. 316–325, Mar. 1996.

    [39] C. L. Chen, C. M. Lee, R. J. Tu, and G. K. Horng, “A novel simplified space-vector-modulated control scheme for three-phase switch-mode rectifier,” IEEE Trans. Ind. Electron., vol. 46, no. 3, pp. 512–516, Jun. 1999.

    [40] L. Malesani, and R. Piovan, “Theoretical performance of the capacitor- diode voltage multiplier fed by a current source,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 147–155, Apr. 1993.

    [41] R.P. Matei, "A class of hysteretic circuits using operational amplifiers," in Proc. IEEE ISSCS 2005, vol.2, pp. 425–428, Jul. 2005.

    [42] V. Kaura, and V. Blasko, “Operation of a phase locked loop system underdistorted utility conditions,” IEEE Trans. Ind. Appl., vol. 33, no. 1, pp. 58-63, Jan/Feb. 1997.

    [43] L. N. Arruda, B. J. Cardoso Filho, S. M. Silva, S. R. Silva, and A. S. A. C. Diniz, “Wide bandwidth single and three-phase PLL structures for grid-tied PV system” in Proc. Photovolt. Spec. Conf., B. J. Cardoso Filho, Ed., pp. 1660–1663, Sep. 2000.

    QR CODE