簡易檢索 / 詳目顯示

研究生: 高立偉
Li-wei Kao
論文名稱: 理論計算於氧氣在硒化釕(100)表面上的還原反應之研究
Theoretical Study of the Oxygen Reduction Reaction on RuSe2(100) Surface
指導教授: 江志強
Jyh-chiang Jiang
口試委員: 趙聖德
Sheng-der Chao
蔡大翔
Dah-shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 101
中文關鍵詞: 燃料電池陰極電觸媒密度泛函理論氧還原反應可逆電位
外文關鍵詞: Fuel cell, Cathode, Electrocatalyst, DFT, ORR, Reversible potential
相關次數: 點閱:318下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由密度泛函理論計算硒化釕(100)及(210)表面不同截面的表面能,以及硒化釕(100)表面上的氧還原反應。由表面能的計算結果發現硒化釕最穩定表面是截面為單一硒原子層的(100)表面,並進一步針對硒化釕(100)表面上的氧還原反應機制做探討。本研究採用六個原子層的硒化釕(100)表面模型,計算各個反應步驟的吸附能、結構、以及可逆電位。我們的計算結果顯示質子遷移較易發生在異相反應路徑。其中,氧還原反應分為過氫氧根生成及氧氣分解兩種不同的路徑,我們發現經由產生過氫氧根為中間產物的四電子路徑是最容易發生的路徑。所求得的起始電位為0.68伏特,顯示硒化釕對於氧還原反應的催化效果並不比白金陰極觸媒的起始電位(約0.7~0.8伏特)來得遜色。然而,本計算值仍與沈明逸等人[37]所得之實驗值約有0.2伏特的誤差,我們推測誤差可能發生的兩種原因為:本計算中所求得之吸附能是在真空條件下而未考慮溶劑效應;在計算可逆電位時我們假設氣相反應及表面反應的( PΔV – TΔS )項相同。


    The plane-wave periodic density functional theory (DFT) calculations were employed to investigate (i) the surface energies of the various terminations of the (100) and (210) surfaces of RuSe2 and (ii) oxygen reduction reaction (ORR) reaction on the RuSe2(100) surface. The surface energy calculation demonstrates that RuSe2(100) surface with Se single layer termination exhibits the lowest surface energy. Therefore, the study of ORR mechanism was focused on the RuSe2(100) surface. Adsorption energies, geometric structures, and reversible potentials for elementary reaction steps on RuSe2(100) surface with six-atomic layer slab model were calculated. Our results showed that proton transfer via the heterogeneous pathway is more favorable than the homogeneous pathway. We considered two different heterogeneous pathways, the OOH formation route and the O2 dissociation route. The results show that the OOH formation route, four-electron pathway, is more favorable. The calculated onset potential (0.68 V) is comparable to that of Pt cathode catalysts, around 0.7~0.8 V. However, there still exists a small deviation. We conjecture that the deviation of the calculated reversible potential with the experimental result (about 0.85~0.9 volt) [37] could be resulted from from (i) the calculations were performed in a vacuum condition without solvent effect; (ii) the ( PΔV – TΔS ) term for gas phase reaction and surface reaction are assumed the same, but it may exists uneglectable change of the ΔS term.

    Abstract I Contents III List of Tables V List of Figures VII CHAPTER 1. Introduction 1 1.1 Fuel Cell 1 1.2 Proton Exchange Membrane Fuel Cell and Direct Methanol Fuel Cell 3 1.3 Oxygen Reduction Reaction (ORR) 6 1.4 Cathode Catalyst 7 1.5 This Research 9 CHAPTER 2. Methodology 10 2.1 Hartree Approximation 10 2.2 DFT Method 11 2.2.1 Description of Theory 11 2.2.2 Derivation and Formalism 14 2.3 Basis Set 18 2.4 Bloch’s Theorem and Plane Wave Basis Set 19 2.4.1 Bloch’s Theorem 19 2.4.2 Plane Wave Basis Set 22 2.4.3 K-Point Sampling 25 2.5 PAW Pseudopotential 26 2.5.1 Pseudopotential 26 2.5.2 Projected Augmented Wave (PAW) 32 2.6 GGA Approximation 34 2.7 NEB method 35 CHAPTER 3. Computational Methods 38 3.1 Computational details 38 3.2 Binding Energy 39 3.3 Surface energy 39 3.4 Reversible potential 40 CHAPTER 4. Results and Discussion 42 4.1 Bulk RuSe2 42 4.2 RuSe2 Surfaces 44 4.2.1 Surface Structures 44 4.2.2 Surface Energies 46 4.2.2 Surface Relaxation 48 4.3 Adsorption 49 4.3.1 Adsorption Properties 49 4.3.2 Discussion 67 4.4 Diffusion Ability of Adsorbates 67 4.5 Oxygen Reduction Reaction Mechanisms 70 4.5.1 OOH Formation Pathway 71 4.5.2 O-O Dissociation Pathway 79 4.5.3 Summary 87 CHAPTER 5. Conclusion 88 Reference 90 Appendix 93

    1. Camargo, P. H. C.; Peng, Z.; Lu, X.; Yang, H.; Xia, Y. J. Mater. Chem. 2009, 19, 1024.
    2. Heinzel, A.; Steele, A. S. Nature 2001, 414, 345.
    3. Larminie, J; Dicks, A. Fuel Cell Systems Explained 2nd ed.; Wiley Inc.: England, 2003.
    4. Hamnett, A. Catal. Today 1997, 38, 445.
    5. Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735.
    6. Thomas, S.; Zalbowitz, M. Fuel Cells-Green Power, Los Alamos, New Mexico, USA, 2000.
    7. Gottesfeld, S.; Zawodzinski, T. A. Advances in Electrochemical Science and Engineering, Vol. 5 (Eds. Alkire, R. C.; Gerischer, H.; Kolb, D. M.; Tobias, C. W.), Wiley-VCH, Weinheim, 1997, pp.195.
    8. Damjanovic, A.; Dey, A.; Bockris, J. Electrochim. Acta 1966, 11, 791.
    9. Angerstein-Kozlowska, H.; Conway, B. E.; Sharp, W. B. A. J. Electroanal. Chem. 1973, 43, 9.
    10. Yeager, E. Electrochim. Acta 1984, 29, 1527.
    11. Markovic, N. M.; Ross, P. N. J. In Interfacial Electrochemistry: Theory, Experiments and Applications; (Ed. Wieckowski, A.), Marcel Dekker, New York, 1999, 821.
    12. Parthasarathy, A.; Srinivasan, S.; Appleby, A. J.; Martin, C. R. J. Electrochem. Soc. 1992, 139, 2530.
    13. Parthasarathy, A.; Srinivasan, S.; Appleby, A. J. J. Electrochem. Soc. 1992, 139, 2856.
    14. Markovic, N. M.; Schmidt, T. J.; Stamenkovic, V.; Ross, P. N. Fuel Cells 2001, 1, 105.
    15. Wang, Y.; Balbuena, P. B. J. Phys. Chem. B 2005, 109, 14896.
    16. Jacob, T. Fuel Cells 2006, 3-4, 159.
    17. Hyman, M. P.; Medlin, J. W. J. Phys. Chem. B 2006, 110, 15338.
    18. Nilekar, A. U.; Mavrikakis, M Surf. Sci. 2008, 602, L89.
    19. Walch, S.; Dhanda, A.; Aryanpour, M.; Pitsch, H. J. Phys. Chem. C 2008, 112, 8464.
    20. Ou, L.; Yang, F.; Liu, Y.; Chen, S. J. Phys. Chem. C 2009, 113, 20657.
    21. Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133.
    22. Paulus, U. A.; Wokaun, A.; Scherer, G. G.; Schmidt, T. J.; Stamenkovic, V.; Radmilovic, V.; Markovic, N. M.; Ross, P. N. J. Phys. Chem. B 2002, 106, 4181.
    23. Paulus, U. A.; Wokaun, A.; Scherer, G. G.; Schmidt, T. J.; Stamenkovic, V.; Markovic, N. M.; Ross, P. N. Electrochim. Acta 2002, 47, 3787.
    24. Srinivasan, S.; Parthasarathy, A.; Valev, O. A.; Ferreira, A. C.; Mukerjee, S.; Appelby, A. J. Proc. Electrochem. Soc. 1992, 92-11, 474.
    25. Colmenares, L.; Jusys, Z.; Behm, R. J. Langmuir 2006, 22, 10437.
    26. Cao, D.; Wieckowski, A.; Inukai, J.; Alonso-Vante, N. J. Electrochem. Soc. 2006, 153, A869.
    27. Zaikovskii, V. I.; Nagabhushana, K. S.; Kriventsov, V. V.; Loponov, K. N.; Cherepanova, S. V.; Kvon, R. I.; Bonnemann, H.; Kochubey, D. I.; Savinova, E. R. J. Phys. Chem. B 2006, 110, 6881.
    28. Colmenares, L.; Jusys, Z.; Behm, R. J. J. Phys. Chem. 2007, 111, 1273.
    29. Lewera, A.; Inukai, J.; Zhou, W. P.; Cao, D, Duong, H. T.; Alonso-Vante, N; Wieckowski, A. Electorchim. Acta 2007, 52, 5759.
    30. Cheng, H.; Yuan, W.; Scott, K. Fuel Cells 2007, 7, 16.
    31. Alonso-Vante, N.; Solorza-Feria, O. Electrochim. Acta 1995, 40, 567.
    32. Dassenoy, F; Vogel, W.; Alonso-Vante, N. J. Phys. Chem. B 2002, 106, 12152.
    33. Alonso-Vante, N.; Malakhov, I. V.; Nikitenko, S. G.; Savinova, E. R.; Kochubey, D. I. Electrochim. Acta 2002, 47, 3807.
    34. Alonso-Vante, N. Chevrel phases and chalcogenides. In Handbook of Fuel Cells. Fundamentals, Technology and Applications; Vielstich, W., Lamm, A., Gasteiger, H. A., Eds.; Wiley: Chichester, 2003; p 534.
    35. Colmenares, L.; Jusys, Z.; Behm R. J. J. Phys. Chem. 2007, 111, 1273.
    36. Dianxue, C.; Andrzej, W.; Junji, I.; Nicolas, A. V. J. Electrochem. Soc. 2006, 153, A869.
    37. Shen, M. Y.; Chiao, S. P.; Tsai, D. S.; Wilkinson, D. P.; Jiang, J. C. Electrochim. Acta 2009, 54, 4297.
    38. Zaikovskii, V. I.; Nagabhushana, K. S.; Kriventsov, V. V.; Loponov, K. N.; Cherepanova, S. V.; Kvon, R. I.; Bonnemann, H.; Kochubey, D. I.; Savinova, E. R. J. Phys. Chem. B 2006, 110, 6881.
    39. Malakhov, I. V.; Nikitenko, S. G.; Savinova, E. R.; Kochubey, D. I.; Alonso-Vante, N. J. Phys. Chem. B 2002, 106, 1670.
    40. Panchenko, A.; Dilger, H.; Mo¨ller, E.; Sixt, T.; Roduner, E. J. Power Sources 2004, 127, 325.
    41. Kinumoto, T.; Takai, K.; Iriyama, Y.; Abe, T.; Inaba, M.; Ogumi, Z. J. Electrochem. Soc. 2006, 153, 58.
    42. Qiao, J.; Saito, M.; Hayamizu, K.; Okada, T. J. Electrochem. Soc. 2006, 153, 967.
    43. Colmenares, L.; Jusys, Z.; Behm, B. J. J. Phys. Chem. C 2007, 111, 1273.
    44. http://www-theor.ch.cam.ac.uk/people/ross/thesis
    45. http://www.answers.com/topic/density-functional-theory
    46. Vuilleumier, Kohn-Sham Method in Plane Waves, November 25, 2004.
    47. D. Roundy, R. Cornell University, DFT plane wave pseudo potential October 10, 2005.
    48. Gonze1, X.; Finocchi, F. Physica Scripta, 2004, 109, 40.
    49. Perdew, K. Burke, M. Ernzerhof , Phys. Rev. Lett. 1996, 77, 18.
    50. Henkelman. G.; Jonsson. H. J. Chem. Phys. 2000, 113, 997.
    51. Boettger, J. C. Phys. Rev.B 1994, 49, 16798.
    52. Anderson, A. B.; Albu, T. V. J. Am. Chem. Soc. 1999, 121, 11855.
    53. Anderson, A. B.; Albu, T. V. J. Electrochem. Soc. 2000, 147, 4229.
    54. Roques, J.; Anderson, A. B. J. Electrochem. Soc. 2004, 151, E85.
    55. Roques, J.; Anderson, A. B. J. Fuel Cell Sci. Technol. 2005, 2, 86.
    56. Cai, Y.; Anderson, A. B. J.Phys. Chem. B 2005, 10, 7577.
    57. Sidik, R. A.; Anderson, A. B. J. Phys. Chem. B 2006, 110, 936.
    58. Vayner, E.; Sidik, R. A.; Anderson, A. B. J. Phys. Chem. C 2007, 111, 10508.
    59. Taken from data given in: http://encyclopedia.thefreedictionary.com/Standard+electrode+potential+(data+page).
    60. Taken from or derived from data given in: Bard, A. J.; Parsons, R.; Jordan, J. Standard Potentials in Aqueous Solution; Marcel Dekker Inc.: New York, 1985.
    61. Joint Committee for Powder Diffraction Standards, Powder Diffraction File 73-1692 (International Centre for Diffraction Data, Philadelphia, 1998).
    62. Hamada, I.; Morikawa, Y. J. Phys. Chem. C 2008, 112, 10889.

    QR CODE