簡易檢索 / 詳目顯示

研究生: 楊孟儒
Meng-Ju Yang
論文名稱: 以濺鍍法控制方向性鉑底電極成長C軸擇優取向氮化鋁薄膜
Control of Texture of Platinum Bottom Electrode to Grow C-axis Preferentially Oriented AlN Thin Film by Sputtering
指導教授: 周賢鎧
Shyankay Jou
口試委員: 顏怡文
Yee-wen Yen
胡毅
Yi Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 80
中文關鍵詞: 氮化鋁體聲波元件
外文關鍵詞: Pt, AlN, FBAR
相關次數: 點閱:221下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用磁控式濺鍍法控制鉑金屬薄膜,利用濺鍍條件控制鉑電極的方向性做為氮化鋁薄膜成長的底電極基材。實驗的第一個部分是以矽基材與玻璃基材使用不同比例的氬氣與氮氣反應式濺鍍出氮化鋁薄膜。探討氮氣比例對於氮化鋁薄膜成長時方向性的影響。第二個部分是利用控制濺鍍條件製作出鉑薄膜與在濺鍍過程中通入氧氣成長PtOx先驅物薄膜,並且利用退火製程控制鉑形成具方向性的薄膜以供作為氮化鋁壓電層的底電極。第三部分則是利用具方向性的鉑底電極當基材濺鍍氮化鋁壓電薄膜。並探討此機制對於氮化鋁薄膜成長時C軸擇優取向的影響。
    由實驗結果得知,在氮氣比例占80%時,可以在矽基材與玻璃基材上濺鍍出以氮化鋁<002>方向為主的薄膜。在濺鍍鉑薄膜部分,可利用濺鍍參數搭配退火的條件達到控制鉑電極薄膜的方向性。在通入氧氣濺鍍PtOx先驅物薄膜經過退火後,並沒有辦法利用濺鍍條件有效的控制鉑電極的方向性。但在經過900℃退火後,經由四點探針量測還原過後的鉑電極可以達到最低7μΩ-cm的電阻率。最後,分別利用蒸鍍鉑基材、玻璃基材與本實驗的鉑底電極同時成長氮化鋁薄膜。可以由XRD圖發現,本實驗的鉑底電極成功的有助於氮化鋁薄膜以C軸擇優的方式沈積在基材表面,達到未來將應用在體聲波元件的目的。


    This study uses magnetron sputtering to develop platinum thin film, and utilize sputter conditions to control orientation of platinum film, which can be used as bottom electrode as well as the substrate for AlN thin film. The first part uses reactive sputtering to deposit AlN thin film on Si and glass substrate. Influence between the N2 flow rate and AlN thin film orientation is investigated. The second part uses sputtering to grow platinum and PtOx thin films with the presence of O2 gas, and uses annealing process to induce texture structure of platinum film. The third part uses texture platinum electrode as substrate and to grow AlN piezoelectric thin film with C-axis preferred orientation.
    We can get <002>-orientated AlN thin film on Si and glass substrate when the N2 gas ratio becomes 80%. In the part of sputter platinum, we can control Pt orientation by sputter conditions and anneal process. We can not control the texture when we add O2 gas to develop thin film. But subsequent annealing at 900℃ reduce the PtOx into Pt thin film with low resistivity of 7μΩ-cm. At last, we use three kinds of substrates, evaporation Pt, glass and our platinum, to grow AlN thin film. From the XRD we can find the textured platinum is useful for growing C-axis preferred orientation AlN, which is capable to be used in FBAR device in the future.

    目 錄 中文摘要.................................................Ⅰ 英文摘要.................................................Ⅱ 目錄.................................................... Ⅲ 圖目錄...................................................Ⅵ 表目錄...................................................Ⅸ 第一章 前言...............................................1 第二章 理論基礎...........................................3 2.1 壓電效應...........................................3 2.2 氮化鋁.............................................5 2.3 聲波元件簡介 ......................................8 2.4 薄膜體聲波元件種類................................11 2.5 薄膜體聲波元件的工作原理..........................13 2.6 下電極與壓電薄膜的關係............................14 2.7 鉑................................................16 2.8 電漿(Plasma).......................................16 2.9 磁控濺鍍..........................................19 2.10 射頻濺鍍..........................................20 2.11 反應性濺鍍........................................20 2.12 薄膜成長機制......................................22 2.13 薄膜晶向成長控制..................................22 第三章 實驗方法與量測....................................24 3.1 實驗材料與藥品....................................24 3.2 實驗裝置..........................................25 3.3 實驗步驟..........................................25 3.4 基材準備..........................................25 3.5 在不同基材上濺鍍氮化鋁薄膜........................25 3.6 製備方向性Pt電極..................................28 3.7 氮化鋁壓電層製作..................................28 3.8 X光繞射分析儀....................................28 3.9 場發射掃瞄式電子顯微鏡(FE-SEM)...................30 3.10 原子力顯微鏡(AFM)................................30 3.11 表面輪廓儀........................................31 3.12 四點探針..........................................31 第四章 實驗結果與討論....................................32 4.1 在不同基材上濺鍍AlN薄膜..........................32 4.2 Pt電極............................................38 4.2.1 濺鍍距離對Pt薄膜電極的影響....................38 4.2.2 退火溫度對Pt薄膜電極的影響....................41 4.2.3 不同鍍膜壓力與濺鍍功率對Pt薄膜電極的影響......43 4.3 PtOx先驅物薄膜....................................48 4.3.1 不同氧氣比例下對PtOx先驅物薄膜的影響..........48 4.3.2 改變不同濺鍍壓力與功率對PtOx先驅物薄膜的影響..54 4.4 Pt電極與PtOx先驅物薄膜特性分析....................58 4.4.1 Pt與PtOx先驅物薄膜XRD比較....................58 4.4.2 Pt與PtOx先驅物薄膜FE-SEM表面型態觀察..........62 4.4.3 Pt與PtOx先驅物薄膜表面型態觀察................65 4.4.4 Pt與PtOx先驅物薄膜四點探針量測................65 4.5 濺鍍AlN壓電層在Pt電極上..........................69 第五章 結論..............................................74 參考文獻.................................................75 圖 目 錄 圖2-1 正壓電效應.........................................4 圖2-2 逆壓電效應.........................................4 圖2-3 氮化鋁結構圖.......................................6 圖2-4 (a)LFE共振結構圖(b)HBAR理論結構圖.................9 圖2-5 表面聲波元件結構示意圖............................10 圖2-6 SMR結構示意圖...................................11 圖2-7 體微細製造之FBAR結構圖..........................12 圖2-8 表面微細製造之FBAR示意圖........................12 圖2-9 Anglient專利製程FBAR結構示意圖...................13 圖2-10 輝光放電示意圖...................................18 圖2-11 磁控濺鍍的磁力線分佈..............................19 圖2-12 反應式濺鍍示意圖..................................21 圖2-13 薄膜成長示意圖....................................23 圖3-1 基材清洗流程......................................26 圖3-2 濺鍍機示意圖......................................27 圖3-3 原子能階圖........................................29 圖3-4 布拉格繞射示意圖..................................30 圖4-1 AlN JCPDS圖......................................33 圖4-2 不同氮氣比例下濺鍍AlN薄膜XRD(a)75% (b)80% (c)90%.34 圖4-3 不同氮氣比例下氮化鋁薄膜方向性的變化圖............35 圖4-4 不同氮氣比例下AlN薄膜FE-SEM圖(a)75% (b)80% (c)90%37 圖4-5 Pt的JCPDS圖......................................39 圖4-6 Pt在不同濺鍍距離下XRD圖(a)未退火(b)退火900℃..... 40 圖4-7 不同退火溫度下Pt的XRD圖........................ 42 圖4-8 不同退火溫度下Pt<111>繞射峰的半高寬與方向性強度比.42 圖4-9 Pt電極在固定功率70W不同鍍膜壓力下退火前後XRD圖 (a)未退火(b)退火400℃(c)退火700℃(d)退火900℃ .......45 圖4-10 Pt電極在固定功率50W不同鍍膜壓力下退火前後XRD圖 (a)未退火(b)退火400℃(c)退火700℃(d)退火900℃......47 圖4-11 濺鍍PtOx先驅物薄膜在不同氧氣比例下未退火XRD圖...49 圖4-12 濺鍍PtOx先驅物薄膜在不同氧氣比例下退火900℃的XRD圖................................................49 圖4-13 PtOx先驅物薄膜在不同氧氣比例下退火前後XRD圖比較 (a) 0%O2(b) 2.5%O2(c) 5%O2(d) 7.5%O2................ 51 圖4-14 PtOx先驅物薄膜在不同氧比例不同退火溫度下XRD圖比較 (a) 2.5%O2(b) 5%O2(c) 7.5%O2........................ 53 圖4-15 PtOx先驅物薄膜經不同溫度回火後<111>方向繞射峰強度比................................................ 53 圖4-16 固定氧比例5%,濺鍍功率70W改變不同鍍膜壓力下PtOx先 驅物薄膜退火前後XRD圖(a)11mTorr (b)5mTorr..........55 圖4-17 氧比例5%,功率50W改變不同鍍膜壓力下PtOx先驅物薄膜 退火前後XRD (a)11mTorr (b)8mTorr (c)4.5mTorr.........57 圖4-18 鍍膜功率70Watt Pt<111>繞射峰強度比................. 59 圖4-19 鍍膜功率50Watt Pt<111>繞射峰強度比.................59 圖4-20濺鍍功率70W、壓力50mTorr退火900℃後XRD圖.......60 圖4-21 濺鍍功率50W、壓力2mTorr退火900℃後XRD圖.........60 圖4-22 濺鍍PtOx先驅物回火後 Pt<111>繞射峰強度比.......... 61 圖4-23 濺鍍功率50W、壓力8mTorr退火900℃後XRD圖........ 61 圖4-24 不同退火溫度下Pt電極FE-SEM表面形貌圖 (a) 未退火(b) 400℃(c) 700℃(d) 900℃................. 63 圖4-25 不同退火溫度下PtOx先驅物FE-SEM表面形貌圖 (a) 未退火(b) 400℃(c) 800℃(d) 900℃................. 64 圖4-26 Pt與PtOx在不同退火溫度下AFM表面形貌............. 66 圖4-27 Pt與PtOx利用AFM計算表面粗糙度與晶粒大小......... 67 圖4-28 Pt與PtOx利用表面輪廓儀量測表面粗糙度.............. 67 圖4-29 Pt與PtOx利用四點探針量測電極電阻率................ 68 圖4-30 在不同基材上濺鍍AlN薄膜.......................... 70 圖4-31 不同濺鍍基材下AlN壓電薄膜SEM圖 (a)濺鍍Pt電極 (b)NDL Pt基材 (c)玻璃基材.............72 圖4-32 利用退火400℃後的Pt電極為基材濺鍍AlN薄膜的XRD圖................................................73 圖4-33 濺鍍在Pt電極上的AlN壓電薄膜SEM剖面圖...........73 表 目 錄 表2-1 氮化鋁材料基礎性質.................................7 表2-2 用於聲波元件壓電材料設計參數.......................8 表2-3 金屬電極特性表....................................15 表2-4 電漿內部碰撞反應..................................18 表2-5 雙原子分子解離能比較..............................21 表4-1 不同基材AlN繞射峰強度比..........................70

    參考文獻
    【1】J. E. Padgett, C. G. Gunther, T. Hattori, “Overview of Wireless Personal Communications” IEEE Communications Magazine, v 33, 1995, pp.28-41.
    【2】C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, San Diego, USA, 1998.
    【3】J. D. Kim, D. W. Weiche, 1997, “Trends and Requirements of SAW Filters for Cellular System Applications” Proc. Ultrasonics Symposium, pp. 293-301.
    【4】K. M. Lakin and J. S. Wang, “Acoustic bulk wave composite resonators” Applied Physics Letters, vol. 38, 1981, pp. 125-127.
    【5】W. C. Dunn, H. M. Liaw, L. Ristic and R. M. Roop, “Monolithic Circuit with integrated bulk structure resonator” U.S. Patent # 5260596, 1993.
    【6】P. D. Bradley, J. D. Lason and R. C. Ruby, “Duplexer Incorporating Thin Film Bulk Acoustic Resonators” U.S. Patent # 6262637, 2001.
    【7】T. Nishihara, T. Yokoyama, T. Miyashita and Y. Satoh, High Performance and Miniature Thin Film Bulk Acoustic Wave Filters for 5 GHz, IEEE Ultrasonics Symposium, 2002, pp. 969-972.
    【8】吳朗,“電子陶瓷-壓電”,全欣科技圖書,台北,83年。
    【9】汪建民,“強介電陶瓷薄膜專題緒論”,工業材料107期,pp.44-48,1995。
    【10】P. Luginbuhl, S. D. Collins, G. A. Racine, M. A. Gretillat, N. F. De Rooij, K. G. Brooks, et. al. “Ultrasonic flexural Lamb-wave actuators based on PZT thin film” Sensors and Actuators A: Physical, Volume: 64, Issue: 1, January 1, 1998, pp. 41-49.
    【11】James H. Edgar and W. J. Meng, “Chapter 1-3 Crystalstructure, Mechanical properties, Thermal properties and Refractive index of AlN” Properties of Group III Nitrides, INSPEC. Institution of Electrical Engineers, London, 1993.
    【12】Bernard Gil and Fernando A. Ponce, “Chapter 4 Structural defects and Material Performance of III-V Nitrides” Group III Nitrides Semiconductor Compounds Physics and Applications, The McGraw-Hill Companies, Inc., 1998, p124, p127, p197.
    【13】C. Morosanu, T. A. Stoica, T. F. Stoica, D. Necsoiu and M. Popescu, “Optical, Electrical and structural properties of AlN thin films” IEEE Proceedings of the International Semiconductor Conference, CAS, 1995, pp. 193-186.
    【14】D. F. Lii, J. L. Huang, S. T. Change, “The mechanical property of squeeze casting AlN/Al composite” Key Engineering Materials, v 206-213, n II, 2001, pp. 1057-1060.
    【15】P. K. Kuo, G. W. Auner and Z. L. Wu, “Microstructure and Thermal Conductivity of Epitaxial AlN Thin Films” Thin Solid Films, v 253, 1994, pp. 223-227.
    【16】E. Ruiz, S. Alvarez, P. Alemany, “Electronic Structure and Properties of AlN” Physical Review B, v 49, 1994, pp. 7115-7123.
    【17】A. M. Sanchez, F. J. Pacheco, S. I. Molina,“AlN buffer layer thickness influence on inversion domains in GaN/AlN/Si(111)”, Material Science and Engineering, B93, 2002, pp181-185.
    【18】黃肇瑞,“氮化物” 陶瓷技術手冊(下),中華民國粉末冶金協會,新竹,1995, pp. 777.
    【19】H. Nakahata, K. Higaki, S. Fujii and A. Hachigo, “SAW devices on diamond”IEEE Ultrasonics Symposium. Proc. , 1995, pp. 361-371.
    【20】顏豐明,“高熱傳導率氮化鋁基板材料之簡介”,材料與社會,73, 1993, pp. 45-46。
    【21】S. V. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Vale and R. A. Moore, ” Film Bulk Acoustic Wave Resonator Technology”, Ultrasonics Symposium Proceedings, v 1, 1990, pp.529-536.
    【22】J.F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House Publisher, 1988, pp.435-442.
    【23】R. B. Stocks and J. D. Crawfold, “X-Band Thin Film Acoustic Filters on GaAs” IEEE Tans. Microwave Theory Tech., vol.41, July 1993, pp.1075-1080.
    【24】R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves” Applied Physics Letters, v 7, 1965, pp. 314-316.
    【25】K. M. Lakin, J. Belsick, J. F. McDonald, K. T. McCarron, “Improved Bulk Wave Resonator Coupling For Wide Bandwidth Filters” Proc. Ultrasonics Symposium, v 1, 2001, pp.827-831.
    【26】K. M. Lakin, G. R. Kline, K. T. McCarron, “High-Q Microwave Acoustic Resonators and Filters” IEEE Transactions on Microwave Theory and Techniques, v 41, 1993, pp.2139-2145.
    【27】白景文,“多孔性基材上之薄膜體聲波元件研製” 國立台灣科技大學材料科技研究所碩士論文,2005。
    【28】K. M. Lakin, “Thin Film Resonators and Filters” Proc. Ultrasonics Symposium, v.2, 1999, pp.895-906.
    【29】李志成,“應用於電路系統之機械共振子之發展“,工業材料,184,2002,pp.93-100。
    【30】W. Lang, “Silicon Microstructuring Technology” Mater. Sci. & Eng., R17, 1996, pp.1-55.
    【31】R. C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien and J. D. Larson, ”Thin Film Bulk Acoustic Resonators (FBAR) for Wireless Applications” Proc. Ultrasonics Symposium, v 1, 2001, pp.813-821.
    【32】Y. G. Lu and L. Wu, Piezoelectric Ceramics for High Frequencies Application, 1990.
    【33】廖志皓、鄭世裕,”壓電陶瓷之電器應用”,材料與社會,第26 期,78 年。
    【34】Brian Chapman, “Glow Discharge Processes”, John Wiley and Sons, 1982.
    【35】高正雄,“電漿化學”,復漢出版社,88年。
    【36】S. M. Rossnagel, J. J. Cuomo and W. D. Westwood, “Handbook of Plasma Processing Technology” Noyes Publications, UK, 1990.
    【37】Donald L. Smith, “Thin-Film Deposition Principles and Practice” The McGraw-Hill Companies Inc., New York, 1999, pp.483-499.
    【38】Milton Ohring, “The Materials Science of Thin Film” Academic Press, 1992.
    【39】C. Y. Chang, Francis Kai, “GaAs High-Speed Devices “ John Wiley & Sons, Inc , New York, 1994, pp.142-143.
    【40】N. Katsumitsu, S. Fujitoshi, I. Akio, “Preparation of TiC Film by R.F. Reactive Sputtering” Nippon Kinzoku Gakkaishi, Journal of the Japan Institute of Metals, v 38, n 10, 1974, pp 913-919.
    【41】E. Janczak-Bienk, H. Jensen and G. Sorensen, Material Science and Engineering, A140, 1991, pp 696.
    【42】K. Shinichi, E. Shinsuke, T. Masao, “Preparation conditions of rf-sputter deposited Fe/AlN multilayered thin films and their properties” Funtai Oyobi Fummatsu Yakin, Journal of the Japan Society of Powder and Powder Metallurgy, v 45, n 3, 1998, pp. 253-256.
    【43】M. Fujiki, M. Takahashi, S. Kikkawa and F. Kanamaru, “Microstructure and preferred orientation in rf sputter deposited AlN thin film” Journal of Materials Science Letters, v 19, n 18, 2000, pp. 1625-1627.

    【44】E. J. Bienk, H. Jensen and G. Sorensen, “Influence of the reactive gas flow on the properties of AlN sputter-deposited films” A: Structural Materials: Properties, Microstructure and Processing, Materials Science & Engineering v A140, n 1-2, 1991, pp. 696-701.
    【45】F. Fucntes, G. Katardjiev, I.V. Harsta, A. U. Smith and S. Berg, “Synthesis of highly oriented piezoelectric AlN films by reactive sputter deposition” Journal of Vacuum Science and Technology, Part A: Vacuum, Surfaces and Films, v 18, n 4 II, 2000, pp. 1609-1612.
    【46】F. Engelmark, G. F. Iriarte, I.V. Katardjiev, M. Ottosson, P. Muralt and S. Berg, “Structural and electroacoustic studies of AlN thin films during low temperature radio frequency sputter deposition” Journal of Vacuum Science and Technology, Part A: Vacuum, Surfaces and Films, v 19, n 5, 2001, pp. 2664-2669.
    【47】G. F. Iriarte, F. Engelmark, M. Ottosson, I.V. Katardjiev,“ Influence of deposition parameters on the stress of magnetron sputter-deposited AlN thin films on Si(100) substrates” Journal of Materials Research, v 18, n 2, February, 2003, pp. 423-432.
    【48】Nomura, Kenji, Ishikawa, Yukari, Shibata, Noriyoshi ,“Crystallinity of AlN film deposited by reactive sputtering method - Effects of residual water vapor” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, Journal of the Ceramic Society of Japan, v 102, Nov, 1994, pp. 1079-1081.
    【49】莊達人,“VLSI製造技術”,高立圖書有限公司,1990。
    【50】B. D. Cullity, “Elements of X-ray Diffraction”, Addison-Wesley publishing Company, INC., 1997.
    【51】D. S. Lee, D. Y. Park, H. J. Woo, S. H. Kim, J. HA and E. Yoon “Preferred Orientation Controlled Grain Growth of Platinum Thin Films on SiO2/Si Substrates” The Japan Society of Applied Physics, vol. 40, 2001, pp. L1-L3.

    QR CODE