簡易檢索 / 詳目顯示

研究生: 潘俊仁
Chun-Jern Pan
論文名稱: 同步輻射X光吸收光譜技術於能源材料鑑定之應用
Characterization of Energy Materials by Synchrotron Radiation X-ray Absorption Spectroscopy
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
李志甫
Jyh-Fu Lee
杜景順
Jing-Shan Do
蘇威年
Wei-Nien Su
王丞浩
Chen-Hao Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 134
中文關鍵詞: 能源材料X光吸收光譜雙金屬觸媒鋰離子電池有序結構氧缺陷鋰鈷氧鉑鈷
外文關鍵詞: energy materials, X-ray absorption spectroscopy, bimetallic catalysts, Li-ion battery, ordered structure, oxygen vacancies, LiCoO2, PtCo
相關次數: 點閱:351下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在發展同步輻射X光吸收光譜技術於能源材料鑑定之應用,能源材料包括能源轉換與能源儲存材料。本論文以燃料電池與鋰電池材料為主要研究系統,利用X光吸收光譜之解析能力探討觸媒之奈米結構與電極材料之結構缺陷。
    第一部分為雙金屬PtCo觸媒奈米結構之鑑定。研究室發展一限制空間合成法製備中孔碳承載之雙金屬觸媒,在700℃高溫還原氣氛下熱處理後,無序結構之PtCo雙金屬奈米粒子轉變為有序之面心正方結構(L10)而無顯著之粒子團聚,因其粒徑太小而不易由XRD分析,故利用X光吸收光譜鑑定其結構。Co K-edge 吸收近邊緣結構圖譜,看出其在白線區域(white line)分裂成兩根明顯之吸收峰,此為面心正方結構(fct)之特徵鋒;而Pt LIII-edge 吸收近邊緣結構圖譜白線區域強度下降,而d軌域電子較填滿。而由結構參數看出Pt-Co異相配位數明顯增加。此觸媒進行氧氣還原活性之量測,其質量活性為無序之PtCo/mc與商業化E-TEK PtCo/C觸媒之1.7倍。其優越之催化活性可歸因於有序結構之PtCo其Pt-Co合金化程度較高,Co的電子轉移造成Pt之電子結構有利於氧氣還原反應。亦進行加速老化測試,發現在電位掃描10000圈後,H2-PtCo/mc觸媒之活性衰退為26%,遠低於PtCo/mc的58%。其穩定性之提升推測為面心正方結構在酸下形成穩定核殼結構與限制空間效應的加成結果。接著利用X光吸收光譜鑑定商業化E-TEK PtCo/C TKK-Pt3Co/C觸媒結構及其氧氣還原催化特性。由Co K-edge 吸收近邊緣結構圖譜發現E-TEK為無序之結構,而TKK觸媒為有序之合金結構。將所得之結構參數套入研究室發展之結構模型中,量化數據指出此TKK具有高合金化程度,其JCo與JPt值皆約為120%,高於E-TEK PtCo/C觸媒(JCo與JPt值分別為63.8與43.9,為Ptrichcore-Corichshell之核殼型結構)。TKK觸媒氧氣還原反應活性與穩定性皆優於E-TEK觸媒。
    第二部分為鋰離子電池LiCoO2陰極電極材料氧缺陷之鑑定。研究中利用X光吸收光譜瞭解過量鋰鈷氧(Li-overstoichiometric, Li1+tCo1-tO2-t)材料中,Li+離子取代結構中Co3+的位置後,整個結構的電荷平衡機制。由Co K-edge 之吸收近邊緣結構圖譜看出,過量鋰(Li1+tCo1-tO2-t)之吸收位置與LiCoO2相近,其價數為Co3+;由Co K-edge EXAFS曲線配適之結構參數得到Co-O配位數為4.7,代表氧缺陷之形成。觀察電子產率模式之Co L-edge吸收圖譜,表面之Co3+亦有氧化為Co4+現象;由 O K-edge之吸收圖譜看出吸收前緣(pre-edge)的特徵峰為氧O 2p 軌域與中間自旋(IS)態之Co3+ 3d電子能階形成混成軌域,電子由1s軌域躍遷到2p-3d混成軌域之吸收峰。由吸收光譜鑑定得知Li+離子取代Co3+後結構之電荷主要藉由形成氧缺陷而來平衡;第二個系統為摻雜Mg進入LiCoO2中形成之LiCo1-yMgyO2結構,利用X光吸收光譜釐清Mg在LiCoO2結構中的位置與其電荷平衡機制。由Co K-edge 與Co L-edge吸收圖譜發現不同Mg2+摻雜後,Co之氧化價數皆維持+3,而由Co K-edge EXAFS曲線配適之結構參數得到Co-O配位數隨著Mg摻雜量的增加而下降,表示氧缺陷隨著增加。Mg之摻雜取代Co的位置後,電荷亦由產生氧缺陷來平衡,O K-edge之吸收圖譜看出無Co3+中間自旋(IS)態之產生。


    In this thesis, X-ray absorption spectroscopy (XAS) was developed to as a nano-characterization tool for energy-related materials. Here, electrocatalysts for fuel cells and active electrode materials for Li-ion batteries are taken as examples to illustrate the capability of XAS to correlate the observed electrochemical phenomena with their theoretical background. XAS has been utilized as a powerful tool to characterize the nano-structured catalysts and structural defects in electrode materials.
    The first part focuses on the characterization of PtCo bimetallic nanocatalysts. Here we present a novel synthetic route to prepare carbon supported PtCo catalysts with structurally ordered face-centered tetragonal (L10) phase. After thermal annealing at 700℃, the disordered PtCo was converted to structurally ordered PtCo L10 structure without severe particle aggregation/sintering. The structure features were studied by X-ray absorption spectroscopy. The XANES spectra of Co K-edge showed characteristic features indicating the formation of chemically ordered PtCo structure. However, the Pt LIII-edge XANES spectra showed successive decrease in white line intensity, caused by increasing charge transfer from Co to Pt. These charge transfer indicates the progression of PtCo alloying caused by reductive annealing process. The extracted structural parameters also confirm that the formation of chemically ordered fct structure. Structurally ordered PtCo catalyst exhibits superior catalytic activity and stability for oxygen reduction reaction. The kinetic mass current density of H2-PtCo/mc-700 catalyst at the potential 0.9 V is 1.7 fold improvement over those of disordered PtCo/mc and commercial E-TEK PtCo/C. The XAS characterization proves that the catalyst with fct structure has higher degree of alloying between Co and Pt atoms compared with fcc structure. The electron-rich Pt in fct structure, resulting from electron transfer from Co to Pt, is the reason for the improvement in its catalytic activity towards oxygen reduction reaction. This work demonstrated the space confinement effect plays an important role in the preparation and stabilization of fct-PtCo nanoparticles against particle sintering/aggregation which is driven by high temperature and potential cycling. For comparison, E-TEK PtCo/C and TKK Pt3Co/C electrocatalysts were chosen to observe the changes in the structure effects towards the catalytic activity of these nanocatalysts. X-ray absorption spectroscopy was employed to characterize the properties such as alloying extent and electronic structure. For E-TEK catalyst, the PtCo NPs possess a Pt-rich in core and Co-rich in shell structure (Ptcore-Coshell). For TKK Pt3Co/C catalyst, the total coordination number of ΣNPt-i is very similar with ΣNCo-i , indicating the well-alloyed structure of Pt3Co nanoparticles.
    The second part emphases the characterization of defect structure of electrode materials in Li-ion battery. For Li-overstoichiometric LiCoO2, the crystal field splitting of Co d orbitals was changed due to the missing of Co-O bonding and local structural distortion. The molecular re-hybridization between Co 3d and O 2p orbitals due to formation of square-based pyramids results in the appearance of pre-edge peaks in the oxygen K-edge spectra. From our previous proposal, intermediate state Co3+ was proposed to exist in square-based pyramids. The appearance of pre-edge peaks in oxygen K-edge spectra were proposed due to the electronic transition from 1s orbital to unoccupied 3d level in which the hybridization of 3dxy and 3dz2 takes places with oxygen 2p orbitals. The excitation energy for transition of 1s electron to those hybridized orbitals is lower than transition to molecular orbitals with eg-2p hybridization. In Mg-doped LiCoO2, the Co K-edge and L-edge XAS spectra showed that the oxidation state of Co is 3+ and remains the same for all Mg-doped samples. Formation of oxygen vacancies is mainly to compensate the charge balance during doping of lower valance Mg.

    摘要 I Abstract IV 誌 謝 VII Table of content VIII List of Figures XI List of Tables XIV Chapter 1 Introduction 1 1.1 General introduction to green energy technologies 1 1.2 Brief introduction to fuel cell 4 1.3 Brief introduction to Li-ion batteries 11 1.4 Motivations 15 Chapter 2. X-ray absorption spectroscopy: principle, analysis and its applications 16 2.1 Introduction 16 2.2 Theory and analysis of XANES 21 2.3 Theory and analysis of EXAFS 23 2.4 Application of XAS to Nano-characterization of energy materials 26 2.4.1 Electrocatalysts for fuel cells 26 2.4.2 Electrode materials for Li-ion batteries 39 2.5 Summary 46 Chapter 3 Superior activity and stability of structurally ordered PtCo nanocatalysts prepared by a space-confined approach towards oxygen reduction reaction 47 3.1 Background 47 3.2 Concept of confine-space approach 52 3.3 Experimental section 53 3.4 Results and discussion 54 3.4.1 XAS analysis upon phase transformation of fcc-PtCo into fct-PtCo alloy nanoparticles 54 3.4.2 Electrochemical LSV for ORR 60 3.4.3 Accelerated degradation test (ADT) 63 3.5 Summary 66 Chapter 4. Characterization of E-TEK PtCo/C catalysts and TKK-Pt3Co/C electrocatalysts by X-ray absorption spectroscopy and its catalytic activity towards oxygen reduction reaction 68 4.1 Introduction 68 4.2 Experimental section 69 4.3 Results and discussion 72 4.3.1 XANES 72 4.3.2 EXAFS 74 4.3.3 Electrochemical LSV for ORR 78 4.4 Summary 81 Chapter 5. XAS study: further confirmation of the presence of CoO5 square-based pyramids with IS-Co3+ in Li-overstoichiometric LiCoO2 82 5.1 Background 82 5.2 Experimental part 86 5.3 Results and discussion 88 5.3.1 Co K-edge XAS 88 5.3.2 Co L-edge and O K-edge XAS 92 5.4 Summary 95 Chapter 6. XAS analysis of LiMgyCo1─yO2 cathode material used in lithium rechargeable batteries 96 6.1 Introduction 97 6.2 Experimental part 98 6.3 Results and Discussion 100 6.3.1 X-ray diffraction 100 6.3.2 Co K-edge XAS 101 6.3.3 Co L-edge XAS for LiMgyCo1-yO2 samples 106 6.3.4 O K-edge XAS for LiMgyCo1-yO2 samples 108 6.4 Charge/discharge studies 110 6.5 Summary 113 Chapter 7. Conclusions 114 Reference 115 Curriculum vitae of author 124

    [1] M. Winter, R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chemical Reviews, 104 (2004) 4245-4270.
    [2] Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C, Chemistry of Materials, 15 (2003) 4896-4915.
    [3] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, 56 (2005) 9-35.
    [4] A. Kazim, Economical and environmental assessments of proton exchange membrane fuel cells in public buildings, Energy Conversion and Management, 42 (2001) 763-772.
    [5] K. A, Economical and environmental assessments of proton exchange membrane fuel cells in public buildings, Energy Conversion and Management, 42 (2001) 763-772.
    [6] G. Hu, J. Fan, S. Chen, Y. Liu, K. Cen, Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields, Journal of Power Sources, 136 (2004) 1-9.
    [7] T. Ghosh, M.B. Vukmirovic, F.J. DiSalvo, R.R. Adzic, Intermetallics as Novel Supports for Pt Monolayer O2 Reduction Electrocatalysts: Potential for Significantly Improving Properties, Journal of the American Chemical Society, 132 (2009) 906-907.
    [8] J. Snyder, T. Fujita, M.W. Chen, J. Erlebacher, Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts, Nat Mater, 9 (2010) 904-907.
    [9] J. Zhang, H. Yang, J. Fang, S. Zou, Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt3Ni Nanopolyhedra, Nano Letters, 10 (2010) 638-644.
    [10] V. Mazumder, M. Chi, K.L. More, S. Sun, Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction Reaction, Journal of the American Chemical Society, 132 (2010) 7848-7849.
    [11] C. Wang, D. van der Vliet, K.L. More, N.J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A.P. Paulikas, G. Karapetrov, D. Strmcnik, N.M. Markovic, V.R. Stamenkovic, Multimetallic Au/FePt3 Nanoparticles as Highly Durable Electrocatalyst, Nano Letters, 11 (2010) 919-926.
    [12] S. Park, A. Wieckowski, M.J. Weaver, Electrochemical Infrared Characterization of CO Domains on Ruthenium-Decorated Platinum Nanoparticles, Journal of the American Chemical Society, 125 (2003) 2282-2290.
    [13] Y. Hudiono, S. Choi, S. Shu, W.J. Koros, M. Tsapatsis, S. Nair, Porous layered oxide/Nafion® nanocomposite membranes for direct methanol fuel cell applications, Microporous and Mesoporous Materials, 118 (2009) 427-434.
    [14] S. Basri, S.K. Kamarudin, Process system engineering in direct methanol fuel cell, International Journal of Hydrogen Energy, 36 (2011) 6219-6236.
    [15] B.L. Garcia, V.A. Sethuraman, J.W. Weidner, R.E. White, R. Dougal, Mathematical Model of a Direct Methanol Fuel Cell, Journal of Fuel Cell Science and Technology, 1 (2004) 43-48.
    [16] R. Ganesan, J.S. Lee, Tungsten Carbide Microspheres as a Noble-Metal-Economic Electrocatalyst for Methanol Oxidation, Angewandte Chemie International Edition, 44 (2005) 6557-6560.
    [17] I. Ávila-García, C. Ramírez, J.M. Hallen López, E.M. Arce Estrada, Electrocatalytic activity of nanosized Pt alloys in the methanol oxidation reaction, Journal of Alloys and Compounds, 495 (2010) 462-465.
    [18] S.G. Chalk, J.F. Miller, Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems, Journal of Power Sources, 159 (2006) 73-80.
    [19] Y. Qiao, C.M. Li, Nanostructured catalysts in fuel cells, Journal of Materials Chemistry, 21 (2011).
    [20] B.-J. Hwang, L.S. Sarma, J.-M. Chen, C.-H. Chen, S.-C. Shih, G.-R. Wang, D.-G. Liu, J.-F. Lee, M.-T. Tang, Structural Models and Atomic Distribution of Bimetallic Nanoparticles as Investigated by X-ray Absorption Spectroscopy, Journal of the American Chemical Society, 127 (2005) 11140-11145.
    [21] J.-M. Chen, L.S. Sarma, C.-H. Chen, M.-Y. Cheng, S.-C. Shih, G.-R. Wang, D.-G. Liu, J.-F. Lee, M.-T. Tang, B.-J. Hwang, Multi-scale dispersion in fuel cell anode catalysts: Role of TiO2 towards achieving nanostructured materials, Journal of Power Sources, 159 (2006) 29-33.
    [22] C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, Size-Selected Synthesis of PtRu Nano-Catalysts:  Reaction and Size Control Mechanism, Journal of the American Chemical Society, 126 (2004) 8028-8037.
    [23] T. Iwasita, H. Hoster, A. John-Anacker, W.F. Lin, W. Vielstich, Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and Pt−Ru Atom Distribution, Langmuir, 16 (1999) 522-529.
    [24] L. Xiong, A. Manthiram, Effect of Atomic Ordering on the Catalytic Activity of Carbon Supported PtM (M = Fe, Co, Ni, and Cu) Alloys for Oxygen Reduction in PEMFCs, Journal of The Electrochemical Society, 152 (2005) A697-A703.
    [25] M. Watanabe, K. Tsurumi, T. Mizukami, T. Nakamura, P. Stonehart, Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells, Journal of The Electrochemical Society, 141 (1994) 2659-2668.
    [26] C. Roth, N. Martz, H. Fuess, Characterization of different Pt-Ru catalysts by X-ray diffraction and transmission electron microscopy, Physical Chemistry Chemical Physics, 3 (2001) 315-319.
    [27] P.M. Voyles, D.A. Muller, J.L. Grazul, P.H. Citrin, H.J.L. Gossmann, Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si, Nature, 416 (2002) 826-829.
    [28] F. Tao, M.E. Grass, Y. Zhang, D.R. Butcher, J.R. Renzas, Z. Liu, J.Y. Chung, B.S. Mun, M. Salmeron, G.A. Somorjai, Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles, Science, 322 (2008) 932-934.
    [29] R.J.e. Gale, Spectroelectrochemistry: Theory and Practice, Plenum Press, New York, (1988).
    [30] V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat Mater, 6 (2007) 241-247.
    [31] V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability, Science, 315 (2007) 493-497.
    [32] V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, Effect of Surface Composition on Electronic Structure, Stability, and Electrocatalytic Properties of Pt-Transition Metal Alloys:  Pt-Skin versus Pt-Skeleton Surfaces, Journal of the American Chemical Society, 128 (2006) 8813-8819.
    [33] D. Bazin, J.J. Rehr, Limits and Advantages of X-ray Absorption Near Edge Structure for Nanometer Scale Metallic Clusters, The Journal of Physical Chemistry B, 107 (2003) 12398-12402.
    [34] D. Bazin, D. Sayers, J.J. Rehr, C. Mottet, Numerical Simulation of the Platinum LIII Edge White Line Relative to Nanometer Scale Clusters, The Journal of Physical Chemistry B, 101 (1997) 5332-5336.
    [35] D.C.a.P. Konningsberger, R. (eds), X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, John Wiley & Sons, Inc., New York, p. 362., (1998).
    [36] Y.e. Iwasawa, XAS for Catalysts and Surfaces, World Scientific, Singapore, p.113., (1996).
    [37] A.I. Frenkel, C.W. Hills, R.G. Nuzzo, A View from the Inside:  Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles, The Journal of Physical Chemistry B, 105 (2001) 12689-12703.
    [38] H. Nitani, T. Nakagawa, H. Daimon, Y. Kurobe, T. Ono, Y. Honda, A. Koizumi, S. Seino, T.A. Yamamoto, Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles, Applied Catalysis A: General, 326 (2007) 194-201.
    [39] D.C. Bazin, D.A. Sayers, J.J. Rehr, Comparison between X-ray Absorption Spectroscopy, Anomalous Wide Angle X-ray Scattering, Anomalous Small Angle X-ray Scattering, and Diffraction Anomalous Fine Structure Techniques Applied to Nanometer-Scale Metallic Clusters, The Journal of Physical Chemistry B, 101 (1997) 11040-11050.
    [40] J.H. Sinfelt, Via, G. H. and Lytle, F. W. , Catal. Rev. Sci. Eng., 26 (1984) 194.
    [41] D.R. Short, A.N. Mansour, J.W. Cook Jr, D.E. Sayers, J.R. Katzer, X-Ray absorption edge and extended x-ray absorption fine structure studies of PtTiO2 catalysts, Journal of Catalysis, 82 (1983) 299-312.
    [42] B.J. Hwang, S.M. Senthil Kumar, C.-H. Chen, R.-W. Chang, D.-G. Liu, J.-F. Lee, Size and Alloying Extent Dependent Physiochemical Properties of Pt−Ag/C Nanoparticles Synthesized by the Ethylene Glycol Method, The Journal of Physical Chemistry C, 112 (2008) 2370-2377.
    [43] B.-J. Hwang, L.S. Sarma, G.-R. Wang, C.-H. Chen, D.-G. Liu, H.-S. Sheu, J.-F. Lee, Heat-Induced Alterations in the Surface Population of Metal Sites in Bimetallic Nanoparticles, Chemistry – A European Journal, 13 (2007) 6255-6264.
    [44] D.-Y. Wang, H.-L. Chou, Y.-C. Lin, F.-J. Lai, C.-H. Chen, J.-F. Lee, B.-J. Hwang, C.-C. Chen, Simple Replacement Reaction for the Preparation of Ternary Fe1–xPtRux Nanocrystals with Superior Catalytic Activity in Methanol Oxidation Reaction, Journal of the American Chemical Society, 134 (2012) 10011-10020.
    [45] V.T. Thanh Ho, K.C. Pillai, H.-L. Chou, C.-J. Pan, J. Rick, W.-N. Su, B.-J. Hwang, J.-F. Lee, H.-S. Sheu, W.-T. Chuang, Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells, Energy & Environmental Science, 4 (2011) 4194-4200.
    [46] F.-J. Lai, W.-N. Su, L.S. Sarma, D.-G. Liu, C.-A. Hsieh, J.-F. Lee, B.-J. Hwang, Chemical Dealloying Mechanism of Bimetallic Pt–Co Nanoparticles and Enhancement of Catalytic Activity toward Oxygen Reduction, Chemistry – A European Journal, 16 (2010) 4602-4611.
    [47] B.J. Hwang, S.M.S. Kumar, C.-H. Chen, Monalisa, M.-Y. Cheng, D.-G. Liu, J.-F. Lee, An Investigation of Structure−Catalytic Activity Relationship for Pt−Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction, The Journal of Physical Chemistry C, 111 (2007) 15267-15276.
    [48] F.-J. Lai, H.-L. Chou, L.S. Sarma, D.-Y. Wang, Y.-C. Lin, J.-F. Lee, B.-J. Hwang, C.-C. Chen, Tunable properties of PtxFe1-x electrocatalysts and their catalytic activity towards the oxygen reduction reaction, Nanoscale, 2 (2010) 573-581.
    [49] V.T.T. Ho, C.-J. Pan, J. Rick, W.-N. Su, B.-J. Hwang, Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction, Journal of the American Chemical Society, 133 (2011) 11716-11724.
    [50] A.N. Mansour, J.W. Cook, D.E. Sayers, J. Phys. Chem., 88 (1984) 2330.
    [51] S.N. Reifsnyder, M.M. Otten, D.E. Sayers, H.H. Lamb, Hydrogen Chemisorption on Silica-Supported Pt Clusters:  In Situ X-ray Absorption Spectroscopy, The Journal of Physical Chemistry B, 101 (1997) 4972-4977.
    [52] V.T.T. Ho, N.G. Nguyen, C.-J. Pan, J.-H. Cheng, J. Rick, W.-N. Su, J.-F. Lee, H.-S. Sheu, B.-J. Hwang, Advanced nanoelectrocatalyst for methanol oxidation and oxygen reduction reaction, fabricated as one-dimensional pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support, Nano Energy, 1 (2012) 687-695.
    [53] N.G. Akalework, C.-J. Pan, W.-N. Su, J. Rick, M.-C. Tsai, J.-F. Lee, J.-M. Lin, L.-D. Tsai, B.-J. Hwang, Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs, Journal of Materials Chemistry, (2012).
    [54] Y.W. Tsai, B.J. Hwang, G. Ceder, H.S. Sheu, D.G. Liu, J.F. Lee, In-Situ X-ray Absorption Spectroscopic Study on Variation of Electronic Transitions and Local Structure of LiNi1/3Co1/3Mn1/3O2 Cathode Material during Electrochemical Cycling, Chemistry of Materials, 17 (2005) 3191-3199.
    [55] I. Chorkendorff, I.E.L. Stephens, A.S. Bondarenko, U.G. Andersen, J. Rossmeisl, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys, Energy & Environmental Science, (2012).
    [56] F. Taufany, C.-J. Pan, H.-L. Chou, J. Rick, Y.-S. Chen, D.-G. Liu, J.-F. Lee, M.-T. Tang, B.-J. Hwang Relating Structural Aspects of Bimetallic Pt3Cr1/C Nanoparticles to Their Electrocatalytic Activity, Stability, and Selectivity in the Oxygen Reduction Reaction, Chemistry – A European Journal, 17 (2011) 10724-10735.
    [57] L. Xiong, A. Manthiram, Effect of Atomic Ordering on the Catalytic Activity of Carbon Supported PtM (M = Fe , Co, Ni, and Cu) Alloys for Oxygen Reduction in PEMFCs, Journal of The Electrochemical Society, 152 (2005) A697-A703.
    [58] X. Li, L. An, X. Wang, F. Li, R. Zou, D. Xia, Supported sub-5nm Pt-Fe intermetallic compounds for electrocatalytic application, Journal of Materials Chemistry, 22 (2012) 6047-6052.
    [59] Z. Liu, G.S. Jackson, B.W. Eichhorn, Tuning the CO-tolerance of Pt-Fe bimetallic nanoparticle electrocatalysts through architectural control, Energy & Environmental Science, 4 (2011) 1900-1903.
    [60] S. Guo, S. Sun, FePt Nanoparticles Assembled on Graphene as Enhanced Catalyst for Oxygen Reduction Reaction, Journal of the American Chemical Society, 134 (2012) 2492-2495.
    [61] J. Kim, Y. Lee, S. Sun, Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction, Journal of the American Chemical Society, 132 (2010) 4996-4997.
    [62] A. Manthiram, A. Vadivel Murugan, A. Sarkar, T. Muraliganth, Nanostructured electrode materials for electrochemical energy storage and conversion, Energy & Environmental Science, 1 (2008) 621-638.
    [63] L. Xiong, A. Manthiram, Influence of atomic ordering on the electrocatalytic activity of Pt-Co alloys in alkaline electrolyte and proton exchange membrane fuel cells, Journal of Materials Chemistry, 14 (2004) 1454-1460.
    [64] E. Casado-Rivera, D.J. Volpe, L. Alden, C. Lind, C. Downie, T. Vázquez-Alvarez, A.C.D. Angelo, F.J. DiSalvo, H.D. Abruña, Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications, Journal of the American Chemical Society, 126 (2004) 4043-4049.
    [65] C. Roychowdhury, F. Matsumoto, V.B. Zeldovich, S.C. Warren, P.F. Mutolo, M. Ballesteros, U. Wiesner, H.D. Abruña, F.J. DiSalvo, Synthesis, Characterization, and Electrocatalytic Activity of PtBi and PtPb Nanoparticles Prepared by Borohydride Reduction in Methanol, Chemistry of Materials, 18 (2006) 3365-3372.
    [66] S. Koh, M.F. Toney, P. Strasser, Activity–stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR), Electrochimica Acta, 52 (2007) 2765-2774.
    [67] B.C. Beard, P.N. Ross, The Structure and Activity of Pt‐Co Alloys as Oxygen Reduction Electrocatalysts, Journal of The Electrochemical Society, 137 (1990) 3368-3374.
    [68] D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. DiSalvo, H.D. Abruña, Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nat Mater, advance online publication (2012).
    [69] E. Kang, H. Jung, J.-G. Park, S. Kwon, J. Shim, H. Sai, U. Wiesner, J.K. Kim, J. Lee, Block Copolymer Directed One-Pot Simple Synthesis of L10-Phase FePt Nanoparticles inside Ordered Mesoporous Aluminosilicate/Carbon Composites, ACS Nano, 5 (2011) 1018-1025.
    [70] E. Kockrick, P. Krawiec, W. Schnelle, D. Geiger, F.M. Schappacher, R. Pöttgen, S. Kaskel, Space-Confined Formation of FePt Nanoparticles in Ordered Mesoporous Silica SBA-15, Advanced Materials, 19 (2007) 3021-3026.
    [71] J. Kim, C. Rong, J.P. Liu, S. Sun, Dispersible Ferromagnetic FePt Nanoparticles, Advanced Materials, 21 (2009) 906-909.
    [72] J. Kim, C. Rong, Y. Lee, J.P. Liu, S. Sun, From Core/Shell Structured FePt/Fe3O4/MgO to Ferromagnetic FePt Nanoparticles, Chemistry of Materials, 20 (2008) 7242-7245.
    [73] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279 (1998) 548-552.
    [74] E.K. Hlil, R. Baudoing-Savois, B. Moraweck, A.J. Renouprez, X-ray Absorption Edges in Platinum-Based Alloys. 2. Influence of Ordering and of the Nature of the Second Metal, The Journal of Physical Chemistry, 100 (1996) 3102-3107.
    [75] J.-I. Park, M.G. Kim, Y.-w. Jun, J.S. Lee, W.-r. Lee, J. Cheon, Characterization of Superparamagnetic “Core−Shell” Nanoparticles and Monitoring Their Anisotropic Phase Transition to Ferromagnetic “Solid Solution” Nanoalloys, Journal of the American Chemical Society, 126 (2004) 9072-9078.
    [76] S. Chen, P.J. Ferreira, W. Sheng, N. Yabuuchi, L.F. Allard, Y. Shao-Horn, Enhanced Activity for Oxygen Reduction Reaction on “Pt3Co” Nanoparticles: Direct Evidence of Percolated and Sandwich-Segregation Structures, Journal of the American Chemical Society, 130 (2008) 13818-13819.
    [77] F. Maillard, L. Dubau, J. Durst, M. Chatenet, J. André, E. Rossinot, Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: Direct evidence of bulk Co segregation to the surface, Electrochemistry Communications, 12 (2010) 1161-1164.
    [78] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2: A new cathode material for batteries of high energy density, Materials Research Bulletin, 15 (1980) 783-789.
    [79] E. Antolini, LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties, Solid State Ionics, 170 (2004) 159-171.
    [80] K. Mukai, J. Sugiyama, Y. Ikedo, H. Nozaki, K. Shimomura, K. Nishiyama, K. Ariyoshi, T. Ohzuku, Magnetism and lithium diffusion in LixCoO2 by a muon-spin rotation and relaxation (m+SR) technique, Journal of Power Sources, 174 (2007) 711-715.
    [81] E. Antolini, L. Giorgi, M. Carewska, Formation of Li- and Mg-Doped LiCoO2 Powders: a BET Analysis, Journal of Materials Science Letters, 18 (1999) 325-327.
    [82] M. Ménétrier, Y. Shao-Horn, A. Wattiaux, L. Fournès, C. Delmas, Iron Substitution in Lithium-Overstoichiometric “Li1.1CoO2”:  Combined 57Fe Mössbauer and 7Li NMR Spectroscopies Studies, Chemistry of Materials, 17 (2005) 4653-4659.
    [83] S. Levasseur, M. Ménétrier, C. Delmas, On the Dual Effect of Mg Doping in LiCoO2 and Li1+δCoO2:  Structural, Electronic Properties, and 7Li MAS NMR Studies, Chemistry of Materials, 14 (2002) 3584-3590.
    [84] S. Levasseur, M. Ménétrier, Y. Shao-Horn, L. Gautier, A. Audemer, G. Demazeau, A. Largeteau, C. Delmas, Oxygen Vacancies and Intermediate Spin Trivalent Cobalt Ions in Lithium-Overstoichiometric LiCoO2, Chemistry of Materials, 15 (2002) 348-354.
    [85] E. Shinova, T. Mandzhukova, E. Grigorova, M. Hristov, R. Stoyanova, D. Nihtianova, E. Zhecheva, On the incorporation of extra Li in lithium cobaltate Li1+xCo1-xO2, Solid State Ionics, 187 (2011) 43-49.
    [86] D. Qian, Y. Hinuma, H. Chen, L.-S. Du, K.J. Carroll, G. Ceder, C.P. Grey, Y.S. Meng, Electronic Spin Transition in Nanosize Stoichiometric Lithium Cobalt Oxide, Journal of the American Chemical Society, 134 (2012) 6096-6099.
    [87] W.-S. Yoon, M. Balasubramanian, K.Y. Chung, X.-Q. Yang, J. McBreen, C.P. Grey, D.A. Fischer, Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy, Journal of the American Chemical Society, 127 (2005) 17479-17487.
    [88] M. Zou, M. Yoshio, S. Gopukumar, J.-i. Yamaki, Synthesis of High-Voltage (4.5 V) Cycling Doped LiCoO2 for Use in Lithium Rechargeable Cells, Chemistry of Materials, 15 (2003) 4699-4702.
    [89] H.-S. Kim, T.-K. Ko, B.-K. Na, W.I. Cho, B.W. Chao, Electrochemical properties of LiMxCo1−xO2 [M = Mg, Zr] prepared by sol–gel process, Journal of Power Sources, 138 (2004) 232-239.
    [90] S. Gopukumar, Y. Jeong, K.B. Kim, Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells, Solid State Ionics, 159 (2003) 223-232.
    [91] J. Cho, Y.J. Kim, B. Park, Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell, Chemistry of Materials, 12 (2000) 3788-3791.
    [92] J. Cho, Y.J. Kim, T.-J. Kim, B. Park, Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell, Angewandte Chemie International Edition, 40 (2001) 3367-3369.
    [93] C. Delmas, I. Saadoune, Electrochemical and physical properties of the LixNi1−yCoyO2 phases, Solid State Ionics, 53–56, Part 1 (1992) 370-375.
    [94] T. Ohzuku, A. Ueda, Solid-State Redox Reactions of LiCoO[sub 2] (R[overline 3]m) for 4 Volt Secondary Lithium Cells, Journal of The Electrochemical Society, 141 (1994) 2972-2977.
    [95] W.-S. Yoon, K.-K. Lee, K.-B. Kim, X-Ray Absorption Spectroscopic Study of LiAl[sub y]Co[sub 1 - y]O[sub 2] Cathode for Li Rechargeable Batteries, Journal of The Electrochemical Society, 149 (2002) A146-A151.
    [96] H. OHZONO, M. KOUNO, H. MIYAKE, H. OHYAMA, Chemical Analysis for Fe in LiCoO2 by XAFS Analysis, ANALYTICAL SCIENCES, 17 (2001) 3.
    [97] S.M. Lala, L.A. Montoro, V. Lemos, M. Abbate, J.M. Rosolen, The negative and positive structural effects of Ga doping in the electrochemical performance of LiCoO2, Electrochimica Acta, 51 (2005) 7-13.
    [98] B. Hedman, K.O. Hodgson, E.I. Solomon, X-ray absorption edge spectroscopy of ligands bound to open-shell metal ions: chlorine K-edge studies of covalency in tetrachlorocuprate(2-), Journal of the American Chemical Society, 112 (1990) 1643-1645.
    [99] W.-S. Yoon, K.-B. Kim, M.-G. Kim, M.-K. Lee, H.-J. Shin, J.-M. Lee, Oxygen Contribution on Li-Ion Intercalation-Deintercalation in LiAl[sub y]Co[sub 1 - y]O[sub 2] Investigated by O K-Edge and Co L-Edge X-Ray Absorption Spectroscopy, Journal of The Electrochemical Society, 149 (2002) A1305-A1309.
    [100] C.-H. Chen, B.-J. Hwang, C.-Y. Chen, S.-K. Hu, J.-M. Chen, H.-S. Sheu, J.-F. Lee, Soft X-ray absorption spectroscopy studies on the chemically delithiated commercial LiCoO2 cathode material, Journal of Power Sources, 174 (2007) 938-943.
    [101] G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang, Identification of cathode materials for lithium batteries guided by first-principles calculations, Nature, 392 (1998) 694-696.
    [102] C.N. Zaheena, C. Nithya, R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, Microwave assisted synthesis and electrochemical behaviour of LiMg0.1Co0.9O2 for lithium rechargeable batteries, Electrochimica Acta, 54 (2009) 2877-2882.
    [103] S. Rodrigues, N. Munichandraiah, A.K. Shukla, Novel solution-combustion synthesis of LiCoO2 and its characterization as cathode material for lithium-ion cells, Journal of Power Sources, 102 (2001) 322-325.
    [104] C. Julien, M.A. Camacho-Lopez, T. Mohan, S. Chitra, P. Kalyani, S. Gopukumar, Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries, Solid State Ionics, 135 (2000) 241-248.
    [105] G.T.-K. Fey, P. Muralidharan, C.-Z. Lu, Y.-D. Cho, Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2, Electrochimica Acta, 51 (2006) 4850-4858.
    [106] H.-W. Ha, N.J. Yun, M.H. Kim, M.H. Woo, K. Kim, Enhanced electrochemical and thermal stability of surface-modified LiCoO2 cathode by CeO2 coating, Electrochimica Acta, 51 (2006) 3297-3302.
    [107] M. Carewska, S. Scaccia, F. Croce, S. Arumugam, Y. Wang, S. Greenbaum, Electrical conductivity and 6,7Li NMR studies of Li1 + yCoO2, Solid State Ionics, 93 (1997) 227-237.

    QR CODE