簡易檢索 / 詳目顯示

研究生: 陳思樺
Szu-Hua Chen
論文名稱: 鎳金屬觸媒催化糠醛加氫氣相反應的特性分析
The preparation of Ni catalysts for gas-phase furfural conversion with hydrogen
指導教授: 林昇佃
shawn D Lin
口試委員: 劉端祺
none
萬本儒
none
陳文華
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 136
中文關鍵詞: 糠醛加氫氣相反應鎳觸媒鎳鈀觸媒
外文關鍵詞: furfural gas-phase reaction with hydrogen, nickel-palladium bimetallic catalyst
相關次數: 點閱:170下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著世界化石燃料日益減少,尋找新的替代能源即變得急迫,糠醛可由生質廢棄物轉化產生,是一種環保且有價值的平台化合物(platform chemical),因此如何有效的利用糠醛轉化即為一重要的課題。考量經濟成本,本研究以便宜的鎳金屬為基礎催化糠醛加氫氣相反應,比較不同金屬顆粒大小的Ni/SiO2,發現小顆粒的Ni觸媒具有較高的支鏈脫CO活性,呋喃選擇率較高,大顆粒的Ni觸媒則傾向生成醛基氫化產物糠醇,且產物選擇率受反應溫度影響顯著:低反應溫度適合產生糠醇,高反應溫度則適合產生呋喃及其衍生物如THF、丙烯、丁醛及丁醇,然而兩種鎳觸媒反應後皆因積碳而失活,不過,失活後兩觸媒皆能夠產生單一呋喃產物,是一個有趣又有價值的現象。加入少量第二金屬Pd、Pt、Cu、Fe於Ni/SiO2觸媒會稍微改變產物的選擇性,其中添加Pd最能幫助緩解失活現象,且可以提高丙烯選擇率,但也由於觸媒穩定性增加,失活後觸媒無法選擇性生成單一產物。最後,本研究比較鎳擔載於不同載體時的特性,發現酸性載體SiO2-Al2O3會造成觸媒失活程度加劇,而K-Al2O3及B-SiO2能增加觸媒穩定性,其中Ni/B-SiO2具有較好的反應活性,且其生成丙烯的選擇率為本研究所用觸媒中最高的。


    Since currently fossil fuel becomes expensive and less plentiful, there is an urgent need for developing a new alternative energy. Among many candidates, to convert biomass materials, such as furfural, for production of valuable platform chemicals is regarded as one of the most promising alternatives to fossil fuels. How to effectively utilize furfural is an important issue.
    In this study, a cheap nickel-based catalyst is considered for gas-phase furfural conversion with hydrogen. The results show that the distribution of products is sensitive to the structure of the Ni-based catalyst. A small particle Ni-based catalyst enhances the decarbonylation reaction while a big particle Ni-based catalyst promotes the producing furfuryl alcohol by hydrogenation. Additionally, the product selectivity is especially affected by reaction temperature. At a higher temperature, more furan and its derivatives such as THF, propylene, butanal and butanol, is produced. At a lower temperature, on the contrary, more furfuryl alcohol is produced. However, it is noted that both nickel catalysts would decay after reaction. Interestingly, the deactivation causes the catalysts can achieve high furan selectivity. Adding second metals, such as Pd, Pt, Cu, Fe, on Ni/SiO2 catalyst would change the product selectivity slightly. Among candidate catalysts, NiPd/SiO2 not only inhibits the deactivation, but also enhances the selectivity to propylene. Extensive studies regarding the support effect have been considered. The results show that acidic support SiO2-Al2O3 causes the catalyst deactivation seriously while K-Al2O3 and B-SiO2 can keep the stability of activity. It is noted that B-SiO2 performs better activity than that of K-Al2O3.

    第一章、緒論 1 1.1前言 1 1.2文獻回顧 3 1.2.1主要的糠醛轉化反應 3 1.2.2 IB、VIII金屬催化糠醛加氫反應的差異 6 1.2.3影響糠醛加氫反應的條件 10 1.2.4鎳觸媒催化糠醛氣相加氫反應 14 1.3研究目的 16 第二章、實驗設備與方法 17 2.1實驗架構 17 2.2藥品與儀器設備 17 2.2.1藥品 17 2.2.2氣體部分 18 2.2.3實驗儀器 18 2.3觸媒製備方法 19 2.3.1載體前處理 19 2.3.2載體製備 19 2.3.2臨濕含浸法製備5wt% Ni/SiO2觸媒 20 2.3.4臨濕含浸法製備5wt% Ni5Mx/SiO2 (M=Cu,Pd, Pt, Fe)觸媒 21 2.3.5臨濕含浸法製備5wt%Ni/B-SiO2觸媒 21 2.4糠醛加氫氣相反應測試 22 2.4.1糠醛反應前處理 22 2.4.2實驗流程 23 2.4.3數據分析方法 25 2.5觸媒特性分析方法 28 2.5.1程溫還原反應 Temperature Programmed Reduction(TPR) 28 2.5.2氫氣化學吸附 H2 Chemisorption 28 2.5.3 X光繞射儀 X-ray Diffraction(XRD) 29 2.5.4 熱重分析儀Thermogravity analysis(TGA) 30 2.5.5比表面積與孔隙測定儀 Brunauer-Emmett-Teller(BET) 30 2.5.6 XAFS分析 31 第三章、結果與討論 32 3.1 鍛燒處理對Ni/SiO2 觸媒的影響 32 3.1.1觸媒特性鑑定 32 3.1.2糠醛氣相加氫反應 40 3.1.3探討糠醛反應之結構敏感性 45 3.2 Ni/SiO2失活現象分析 48 3.2.1失活觸媒之分析 49 3.2.2 調控積碳條件催化糠醛加氫反應 56 3. 3添加第二金屬Pd, Pt, Fe,Cu於Ni/SiO2對糠醛加氫反應的影響 62 3.3.1不同金屬修飾Ni/SiO2應用於糠醛反應的影響 62 3.3.2 不同Ni/Pd莫爾比例之NiPd/SiO2觸媒應用於糠醛反應的影響 77 3.3.3不同還原程度之NiPd/SiO2觸媒應用於糠醛反應的影響 93 3.4載體效應對糠醛加氫反應的影響 100 3.4.1載體酸鹼性對Ni觸媒的影響 100 3.4.2 Ni/La2O3分析 119 第四章、結論 124 第五章、參考資料 126 附錄一 反應系統加熱帶設定溫度 131 附錄二 還原程度計算方法 132 附錄三 氫氣化學吸附圖 133 附錄四 同步XRD分析結果 135

    1. de Souza, R.L., H. Yu, F. Rataboul, and N. Essayem, 5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System. Challenges, 2012. 3(2): p. 212.
    2. Resasco, S.S.D.E., J. Faria, T. Prasomsri, and a.M.P. Ruiz, Heterogeneous Catalysis in Biomass to Chemicals and Fuels. Research Signpost, 2011.
    3. Resasco, D.E., S. Sitthisa, J. Faria, T. Prasomsri, and M.P. Ruiz, Furfurals as chemical platform for biofuels production. Heterogeneous Catalysis in Biomass to Chemicals and Fuels, 2012: p. 155-188.
    4. Xing, R., A.V. Subrahmanyam, H. Olcay, W. Qi, G.P. van Walsum, H. Pendse, and G.W. Huber, Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chemistry, 2010. 12(11): p. 1933-1946.
    5. Shi, S., H. Guo, and G. Yin, Synthesis of maleic acid from renewable resources: Catalytic oxidation of furfural in liquid media with dioxygen. Catalysis Communications, 2011. 12(8): p. 731-733.
    6. Verdeguer, P., N. Merat, and A. Gaset, Lead/platinum on charcoal as catalyst for oxidation of furfural. Effect of main parameters. Applied Catalysis A: General, 1994. 112(1): p. 1-11.
    7. Zeitsch, K.J., The Chemistry and technology of furfural and its many by-products, Elsevier Science B.V. Amsterdam. 2000: p. 28-33.
    8. Zheng, H.-Y., Y.-L. Zhu, B.-T. Teng, Z.-Q. Bai, C.-H. Zhang, H.-W. Xiang, and Y.-W. Li, Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran. Journal of Molecular Catalysis A: Chemical, 2006. 246(1–2): p. 18-23.
    9. Sitthisa, S. and D. Resasco, Hydrodeoxygenation of Furfural Over Supported Metal Catalysts: A Comparative Study of Cu, Pd and Ni. Catalysis Letters, 2011. 141(6): p. 784-791.
    10. Koso, S., N. Ueda, Y. Shinmi, K. Okumura, T. Kizuka, and K. Tomishige, Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2. Journal of Catalysis, 2009. 267(1): p. 89-92.
    11. Claus, P., Selective hydrogenation of ά,β-unsaturated aldehydes and other C=O and C=C bonds containing compounds. Topics in Catalysis, 1998. 5(1-4): p. 51-62.
    12. Li, H., H. Luo, L. Zhuang, W. Dai, and M. Qiao, Liquid phase hydrogenation of furfural to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts. Journal of Molecular Catalysis A: Chemical, 2003. 203(1–2): p. 267-275.
    13. Liaw, B.-J., S.-J. Chiang, S.-W. Chen, and Y.-Z. Chen, Preparation and catalysis of amorphous CoNiB and polymer-stabilized CoNiB catalysts for hydrogenation of unsaturated aldehydes. Applied Catalysis A: General, 2008. 346(1–2): p. 179-188.
    14. Kijeński, J., P. Winiarek, T. Paryjczak, A. Lewicki, and A. Mikołajska, Platinum deposited on monolayer supports in selective hydrogenation of furfural to furfuryl alcohol. Applied Catalysis A: General, 2002. 233(1–2): p. 171-182.
    15. Shekhar, R., M.A. Barteau, R.V. Plank, and J.M. Vohs, Adsorption and Reaction of Aldehydes on Pd Surfaces. The Journal of Physical Chemistry B, 1997. 101(40): p. 7939-7951.
    16. Nakagawa, Y., H. Nakazawa, H. Watanabe, and K. Tomishige, Total Hydrogenation of Furfural over a Silica-Supported Nickel Catalyst Prepared by the Reduction of a Nickel Nitrate Precursor. ChemCatChem, 2012. 4(11): p. 1791-1797.
    17. Sitthisa, S., T. Sooknoi, Y. Ma, P.B. Balbuena, and D.E. Resasco, Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. Journal of Catalysis, 2011. 277(1): p. 1-13.
    18. Sitthisa, S., T. Pham, T. Prasomsri, T. Sooknoi, R.G. Mallinson, and D.E. Resasco, Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd–Cu/SiO2 catalysts. Journal of Catalysis, 2011. 280(1): p. 17-27.
    19. Zhang, W., Y. Zhu, S. Niu, and Y. Li, A study of furfural decarbonylation on K-doped Pd/Al2O3 catalysts. Journal of Molecular Catalysis A: Chemical, 2011. 335(1–2): p. 71-81.
    20. Pushkarev, V.V., N. Musselwhite, K. An, S. Alayoglu, and G.A. Somorjai, High Structure Sensitivity of Vapor-Phase Furfural Decarbonylation/Hydrogenation Reaction Network as a Function of Size and Shape of Pt Nanoparticles. Nano Letters, 2012. 12(10): p. 5196-5201.
    21. Lukes, R.M. and C.L. Wilson, Reactions of Furan Compounds. XI. Side Chain Reactions of Furfural and Furfuryl Alcohol over Nickel-Copper and Iron-Copper Catalysts1. Journal of the American Chemical Society, 1951. 73(10): p. 4790-4794.
    22. Wilson, C.L., Reactions of Furan Compounds. X. Catalytic Reduction of Methylfuran to 2-Pentanone. Journal of the American Chemical Society, 1948. 70(4): p. 1313-1315.
    23. Xu, C., L. Zheng, D. Deng, J. Liu, and S. Liu, Effect of activation temperature on the surface copper particles and catalytic properties of Cu–Ni–Mg–Al oxides from hydrotalcite-like precursors. Catalysis Communications, 2011. 12(11): p. 996-999.
    24. Hronec, M., K. Fulajtarová, and T. Liptaj, Effect of catalyst and solvent on the furan ring rearrangement to cyclopentanone. Applied Catalysis A: General, 2012. 437–438(0): p. 104-111.
    25. Hronec, M. and K. Fulajtarová, Selective transformation of furfural to cyclopentanone. Catalysis Communications, 2012. 24(0): p. 100-104.
    26. Yang, Y., Z. Du, Y. Huang, F. Lu, F. Wang, J. Gao, and J. Xu, Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts. Green Chemistry, 2013. 15(7): p. 1932-1940.
    27. Srivastava, R.D. and A.K. Guha, Kinetics and mechanism of deactivation of PdAl2O3 catalyst in the gaseous phase decarbonylation of furfural. Journal of Catalysis, 1985. 91(2): p. 254-262.
    28. Xu, W., H. Wang, X. Liu, J. Ren, Y. Wang, and G. Lu, Direct catalytic conversion of furfural to 1, 5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co 2 AlO 4 catalyst. Chemical Communications, 2011. 47(13): p. 3924-3926.
    29. Seo, G. and H. Chon, Hydrogenation of furfural over copper-containing catalysts. Journal of Catalysis, 1981. 67(2): p. 424-429.
    30. Sitthisa, S., W. An, and D.E. Resasco, Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. Journal of Catalysis, 2011. 284(1): p. 90-101.
    31. Reddy, B.M., G.K. Reddy, K.N. Rao, A. Khan, and I. Ganesh, Silica supported transition metal-based bimetallic catalysts for vapour phase selective hydrogenation of furfuraldehyde. Journal of Molecular Catalysis A: Chemical, 2007. 265(1–2): p. 276-282.
    32. Louis, C., Z.X. Cheng, and M. Che, Characterization of nickel/silica catalysts during impregnation and further thermal activation treatment leading to metal particles. The Journal of Physical Chemistry, 1993. 97(21): p. 5703-5712.
    33. Montes, M., C. Penneman de Bosscheyde, B.K. Hodnett, F. Delannay, P. Grange, and B. Delmon, Influence of metal-support interactions on the dispersion, distribution, reducibility and catalytic activity of Ni/SiO2 catalysts. Applied Catalysis, 1984. 12(4): p. 309-330.
    34. Mile, B., D. Stirling, M.A. Zammitt, A. Lovell, and M. Webb, The location of nickel oxide and nickel in silica-supported catalysts: Two forms of “NiO” and the assignment of temperature-programmed reduction profiles. Journal of Catalysis, 1988. 114(2): p. 217-229.
    35. Venugopal, A., S. Naveen Kumar, J. Ashok, D. Hari Prasad, V. Durga Kumari, K.B.S. Prasad, and M. Subrahmanyam, Hydrogen production by catalytic decomposition of methane over. International Journal of Hydrogen Energy, 2007. 32(12): p. 1782-1788.
    36. Ermakova, M.A., D.Y. Ermakov, L.M. Plyasova, and G.G. Kuvshinov, XRD studies of evolution of catalytic nickel nanoparticles during synthesis of filamentous carbon from methane. Catalysis Letters, 1999. 62(2-4): p. 93-97.
    37. Bartholomew, C.H., Carbon Deposition in Steam Reforming and Methanation. Catalysis Reviews, 1982. 24(1): p. 67-112.
    38. Wang, S., G.Q. Lu, and G.J. Millar, Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts:  State of the Art. Energy & Fuels, 1996. 10(4): p. 896-904.
    39. Moulijn, J.A., A.E. van Diepen, and F. Kapteijn, Catalyst deactivation: is it predictable?: What to do? Applied Catalysis A: General, 2001. 212(1–2): p. 3-16.
    40. Bergna, H.E. and W.O. Roberts, Colloidal silica: fundamentals and applications. Vol. 131. 2005: CRC Press.
    41. Boujday, S., J. Lehman, J.-F. Lambert, and M. Che, Evolution of Transition Metal Speciation in the Preparation of Supported Catalysts: Halogenoplatinate(IV) on Silica. Catalysis Letters, 2003. 88(1-2): p. 23-30.
    42. Yu, X., J. Chen, and T. Ren, Promotional effect of Fe on performance of Ni/SiO2 for deoxygenation of methyl laurate as a model compound to hydrocarbons. RSC Advances, 2014. 4(87): p. 46427-46436.
    43. Mukainakano, Y., B. Li, S. Kado, T. Miyazawa, K. Okumura, T. Miyao, S. Naito, K. Kunimori, and K. Tomishige, Surface modification of Ni catalysts with trace Pd and Rh for oxidative steam reforming of methane. Applied Catalysis A: General, 2007. 318(0): p. 252-264.
    44. Feeley, J.S. and W.M.H. Sachtler, Palladium-enhanced reducibility of nickel in NaY. Zeolites, 1990. 10(8): p. 738-745.
    45. McCaulley, J.A., Temperature dependence of the Pd \textit{K} -edge extended x-ray-absorption fine structure of ${\mathrm{PdC}}_{\mathit{x}}$ ( \textit{x} \ensuremath{\sim}0.13). Physical Review B, 1993. 47(9): p. 4873-4879.
    46. Takenaka, S., Y. Shigeta, E. Tanabe, and K. Otsuka, Methane Decomposition into Hydrogen and Carbon Nanofibers over Supported Pd−Ni Catalysts:  Characterization of the Catalysts during the Reaction. The Journal of Physical Chemistry B, 2004. 108(23): p. 7656-7664.
    47. Lu, P., T. Teranishi, K. Asakura, M. Miyake, and N. Toshima, Polymer-Protected Ni/Pd Bimetallic Nano-Clusters:  Preparation, Characterization and Catalysis for Hydrogenation of Nitrobenzene. The Journal of Physical Chemistry B, 1999. 103(44): p. 9673-9682.
    48. Fleet Michael, E. and S. Muthupari, Boron K-edge XANES of borate and borosilicate minerals, in American Mineralogist. 2000. p. 1009.
    49. Kizler, P., E. Hertlein, P. Vargas, and S. Steeb, X-ray absorption measurements at the boron K-edge with amorphous iron-and nickel-boron alloys. Le Journal de Physique Colloques, 1986. 47(C8): p. C8-1019-C8-1024.
    50. Tanabe, K., Chapter 2 - Determination of Acidic Properties on Solid Surfaces, in Solid Acids and Bases, K. Tanabe, Editor. 1970, Academic Press. p. 5-33.
    51. Fatsikostas, A.N., D.I. Kondarides, and X.E. Verykios, Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today, 2002. 75(1–4): p. 145-155.
    52. Valderrama, G., M.R. Goldwasser, C.U.d. Navarro, J.M. Tatibouët, J. Barrault, C. Batiot-Dupeyrat, and F. Martínez, Dry reforming of methane over Ni perovskite type oxides. Catalysis Today, 2005. 107–108(0): p. 785-791.
    53. Koo, K.Y., H.-S. Roh, Y.T. Seo, D.J. Seo, W.L. Yoon, and S.B. Park, Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process. Applied Catalysis A: General, 2008. 340(2): p. 183-190.
    54. Aghazadeh, M., A.N. Golikand, M. Ghaemi, and T. Yousefi, La2O3 nanoplates prepared by heat-treatment of electrochemically grown La (OH) 3 nanocapsules from nitrate medium. Journal of The Electrochemical Society, 2011. 158(12): p. E136-E141.

    QR CODE