簡易檢索 / 詳目顯示

研究生: 黃勝暘
Sheng-Yang Huang
論文名稱: 催化轉移氫化反應於糠醛生產2-甲基呋喃之製程開發
Process Development of Catalytic Transfer Hydrogenation for 2-methylfuran Production from Furfural
指導教授: 李豪業
Hao-Yeh Lee
余柏毅
Bor-Yih Yu
口試委員: 陳誠亮
錢義隆
汪進忠
李豪業
余柏毅
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 100
中文關鍵詞: 糠醛2-甲基呋喃催化轉移氫化程序設計技術-經濟分析
外文關鍵詞: Furfural, 2-methylfuran, Catalytic transfer hydrogenation, Process design, Techno-economic analysis
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2050年達成淨零排放是近年來受到全世界矚目的環保議題。交通運輸方面是需要改善的目標之一。在短期的幾十年之內仍然有些交通工具使用內燃機作為動力來源。因此探索既能保持引擎性能,又對環境友好的可再生燃料顯得尤為重要。
    2-甲基呋喃是近期獲選為具有發展潛力替代性燃料之一。本研究將從生物精煉廠的平台分子糠醛作為原物料,進行催化轉移氫化而得2-甲基呋喃。催化轉移氫化指的是以有機化合物(如醇類)中的氫原子為氫源,透過合適的觸媒將反應物氫化。因為催化轉移加氫過程不直接使用氫氣,可以避免使用氫氣的運輸與儲存風險。
    本研究設計甲醇與異丙醇兩種氫源的催化轉移氫化,應用於糠醛產出2-甲基呋喃的製程。分別就兩個案例建立熱力學與動力學模型,設計與優化製程,以及進行技術-經濟分析與碳排放分析。本研究在內部報酬率15%的情形下,以異丙醇為氫源之案例所能獲得2-甲基呋喃的最低售價為每公斤3.09美金,在經濟方面能與其他製程競爭。此外該案例在製造過程中有較低的單位產品之碳排放量。因此該案例為本研究最具潛力的製程。


    Achieving net zero emissions by 2050 has emerged as a prominent environmental concern that has garnered global recognition in recent years. Transportation is also one of the sectors that needs improvement. In the near future, there are still a number of vehicles that rely on the internal combustion engine as their primary power source. Therefore, it is particularly important to explore renewable fuels that can maintain engine performance while also being environmentally friendly.
    2-Methylfuran has recently been selected as one of the alternative fuels with development potential. In this study, 2-methylfuran was obtained from the catalytic transfer hydrogenation of furfural, which is a platform chemical in a biorefinery. Catalytic transfer hydrogenation refers to the use of hydrogen atoms within organic compounds, such as alcohols, as a source of hydrogen. This process involves the hydrogenation of reactants using an appropriate catalyst. Because the catalytic transfer hydrogenation process does not directly use hydrogen, the risks associated with the transportation and storage of hydrogen can be avoided.
    In this study, the catalytic transfer hydrogenation of two hydrogen sources, methanol and isopropanol, was designed and applied to the process of producing 2-methylfuran from furfural. Establish thermodynamic and kinetic models, design and optimize the process, and conduct techno-economic analysis and carbon emission analysis for both cases. In this study, under the condition of a 15% internal rate of return, the minimum required selling price of 2-methylfuran obtained by using isopropanol as a hydrogen source is $ 3.09 USD/kg. It can compete with other processes in terms of economics. Besides, this case has lower carbon emissions per unit of product during the manufacturing process. Therefore, this case is the most promising process in this study.

    誌謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 VIII 1. Introduction 1 1.1 Research background 1 1.1.1 Biomass and biorefinery 1 1.1.2 Furfural and 2-methylfuran 4 1.1.3 Catalytic transfer hydrogenation 7 1.2 Literature review 8 1.3 Thesis organization 10 2. Thermodynamic and kinetic models 12 2.1 Case1: Methanol as hydrogen source 12 2.1.1 Thermodynamic model 13 2.1.2 kinetic model 16 2.2 Case 2: Isopropanol as hydrogen source 24 2.2.1 Thermodynamic model 25 2.2.2 kinetic model 27 3. Process design 31 3.1 Case 1: Methanol as hydrogen source 31 3.1.1 Process design concept 31 3.1.2 Process optimization 36 3.2 Case 2: Isopropanol as hydrogen source 44 3.2.1 Process design concept 44 3.2.2 Process optimization 49 4. Process evaluation 56 4.1 Techno-economic analysis 56 4.1.1 Case 1: Methanol as hydrogen source 56 4.1.2 Case 2: Isopropanol as hydrogen source 63 4.2 Carbon emission analysis 67 4.3 Discussion of evaluation 68 5. Conclusions 70 References 71 Appendix 75

    1. Lange, J.P., E. van der Heide, J. van Buijtenen, and R. Price, Furfural--a promising platform for lignocellulosic biofuels. ChemSusChem, 2012. 5(1): p. 150-66.
    2. Maity, S.K., Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renewable and Sustainable Energy Reviews, 2015. 43: p. 1427-1445.
    3. Alonso, D.M., J.Q. Bond, and J.A. Dumesic, Catalytic conversion of biomass to biofuels. Green chemistry, 2010. 12(9): p. 1493-1513.
    4. Ragauskas, A.J., C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick Jr, J.P. Hallett, D.J. Leak, and C.L. Liotta, The path forward for biofuels and biomaterials. science, 2006. 311(5760): p. 484-489.
    5. Kumar, P., D.M. Barrett, M.J. Delwiche, and P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & engineering chemistry research, 2009. 48(8): p. 3713-3729.
    6. Werpy, T. and G. Petersen, Top value added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas. 2004, National Renewable Energy Lab., Golden, CO (US).
    7. Bozell, J.J. and G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chemistry, 2010. 12(4).
    8. Mariscal, R., P. Maireles-Torres, M. Ojeda, I. Sádaba, and M. López Granados, Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy & Environmental Science, 2016. 9(4): p. 1144-1189.
    9. PubChem Identifier: CID 7362, Furfural. 2023; Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Furfural.
    10. PubChem Identifier: CID 10797. 2023; Available from: https://pubchem.ncbi.nlm.nih.gov/compound/10797.
    11. Nakagawa, Y., M. Tamura, and K. Tomishige, Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS catalysis, 2013. 3(12): p. 2655-2668.
    12. Li, X., P. Jia, and T. Wang, Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals. ACS Catalysis, 2016. 6(11): p. 7621-7640.
    13. Hoydonckx, H., W. Van Rhijn, W. Van Rhijn, D. De Vos, and P. Jacobs, Furfural and derivatives. Ullmann's encyclopedia of industrial chemistry, 2000.
    14. Stadler, R.H. and V. Theurillat, Heat-generated toxicants in foods (acrylamide, MCPD esters, glycidyl esters, furan, and related compounds), in Chemical contaminants and residues in food. 2017, Elsevier. p. 171-195.
    15. Hoang, A.T. and V.V. Pham, 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renewable and Sustainable Energy Reviews, 2021. 148.
    16. Bohre, A., S. Dutta, B. Saha, and M.M. Abu-Omar, Upgrading Furfurals to Drop-in Biofuels: An Overview. ACS Sustainable Chemistry & Engineering, 2015. 3(7): p. 1263-1277.
    17. IEA. Net Zero by 2050. 2021; Available from: https://www.iea.org/reports/net-zero-by-2050.
    18. Zeitsch, K.J., The chemistry and technology of furfural and its many by-products. 2000: Elsevier.
    19. Wu, S., N. Salmon, M.M.-J. Li, R. Bañares-Alcántara, and S.C.E. Tsang, Energy Decarbonization via Green H2 or NH3? ACS Energy Letters, 2022. 7(3): p. 1021-1033.
    20. Gilkey, M.J. and B. Xu, Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS catalysis, 2016. 6(3): p. 1420-1436.
    21. Fang, W. and A. Riisager, Recent advances in heterogeneous catalytic transfer hydrogenation/hydrogenolysis for valorization of biomass-derived furanic compounds. Green Chemistry, 2021. 23(2): p. 670-688.
    22. An, Z. and J. Li, Recent advances in catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts. Green Chemistry, 2022.
    23. Ma, F., H. Li, and J. Jiang, Furfural reduction via hydrogen transfer from supercritical methanol. Chemical Research in Chinese Universities, 2019. 35(3): p. 498-503.
    24. Li, B., L. Li, H. Sun, and C. Zhao, Selective Deoxygenation of Aqueous Furfural to 2-Methylfuran over Cu0/Cu2O·SiO2 Sites via a Copper Phyllosilicate Precursor without Extraneous Gas. ACS Sustainable Chemistry & Engineering, 2018. 6(9): p. 12096-12103.
    25. Panagiotopoulou, P. and D.G. Vlachos, Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Applied Catalysis A: General, 2014. 480: p. 17-24.
    26. Srivastava, S., G. Jadeja, and J. Parikh, Synergism studies on alumina-supported copper-nickel catalysts towards furfural and 5-hydroxymethylfurfural hydrogenation. Journal of Molecular Catalysis A: Chemical, 2017. 426: p. 244-256.
    27. Gong, W., C. Chen, R. Fan, H. Zhang, G. Wang, and H. Zhao, Transfer-hydrogenation of furfural and levulinic acid over supported copper catalyst. Fuel, 2018. 231: p. 165-171.
    28. Tseng, Y.-T., J.D. Ward, and H.-Y. Lee, Design and control of a continuous multi-product process with product distribution switching: Sustainable manufacture of furfuryl alcohol and 2-methylfuran. Chemical Engineering and Processing: Process Intensification, 2016. 105: p. 10-20.
    29. Fredenslund, A., Vapor-liquid equilibria using UNIFAC: a group-contribution method. 2012: Elsevier.
    30. Liang, H.-H., J.-Y. Li, L.-H. Wang, S.-T. Lin, and C.-M. Hsieh, Improvement to PR+ COSMOSAC EOS for predicting the vapor pressure of nonelectrolyte organic solids and liquids. Industrial & Engineering Chemistry Research, 2019. 58(12): p. 5030-5040.
    31. Millar, G.J. and M. Collins, Industrial Production of Formaldehyde Using Polycrystalline Silver Catalyst. Industrial & Engineering Chemistry Research, 2017. 56(33): p. 9247-9265.
    32. Ott, M., H. Schoenmakers, and H. Hasse, Distillation of formaldehyde containing mixtures: laboratory experiments, equilibrium stage modeling and simulation. Chemical Engineering and Processing: Process Intensification, 2005. 44(6): p. 687-694.
    33. Maurer, G., Vapor-liquid equilibrium of formaldehyde-and water-containing multicomponent mixtures. AIChE Journal, 1986. 32(6): p. 932-948.
    34. Kirkpatrick, S., C.D. Gelatt Jr, and M.P. Vecchi, Optimization by simulated annealing. science, 1983. 220(4598): p. 671-680.
    35. Cardoso, M., R. Salcedo, S.F. De Azevedo, and D. Barbosa, A simulated annealing approach to the solution of MINLP problems. Computers & chemical engineering, 1997. 21(12): p. 1349-1364.
    36. Gilkey, M.J., P. Panagiotopoulou, A.V. Mironenko, G.R. Jenness, D.G. Vlachos, and B. Xu, Mechanistic insights into metal lewis acid-mediated catalytic transfer hydrogenation of furfural to 2-methylfuran. Acs Catalysis, 2015. 5(7): p. 3988-3994.
    37. Turton, R., R.C. Bailie, W.B. Whiting, and J.A. Shaeiwitz, Analysis, synthesis and design of chemical processes. 2008: Pearson Education.
    38. Yu, B.-Y., P.-J. Wu, C.-C. Tsai, and S.-T. Lin, Evaluating the direct CO2 to diethyl carbonate (DEC) process: Rigorous simulation, techno-economical and environmental evaluation. Journal of CO2 Utilization, 2020. 41: p. 101254.
    39. Schmidt, W.P., K.S. Winegardner, M. Dennehy, and H. Castle‐Smith, Safe design and operation of a cryogenic air separation unit. Process Safety Progress, 2001. 20(4): p. 269-279.
    40. Zhu, F., K. Huang, S. Wang, L. Shan, and Q. Zhu, Towards further internal heat integration in design of reactive distillation columns—Part IV: Application to a high-purity ethylene glycol reactive distillation column. Chemical Engineering Science, 2009. 64(15): p. 3498-3509.
    41. Pattnaik, F., S. Tripathi, B.R. Patra, S. Nanda, V. Kumar, A.K. Dalai, and S. Naik, Catalytic conversion of lignocellulosic polysaccharides to commodity biochemicals: a review. Environmental Chemistry Letters, 2021. 19: p. 4119-4136.
    42. Methanol Price Trend and Forecast. 2022 [cited 2023 03 Aug.]; Available from: https://www.chemanalyst.com/Pricing-data/methanol-1.
    43. Formaldehyde Price Trend and Forecast. 2022 [cited 2023 03 Aug.]; Available from: https://www.chemanalyst.com/Pricing-data/formaldehyde-1214.
    44. Acetone Price Trend and Forecast. 2023 [cited 2023 03 Aug.]; Available from: https://www.chemanalyst.com/Pricing-data/acetone-12.
    45. Mono Ethylene Glycol (MEG) Price Trend and Forecast. 2023 [cited 2023 03 Aug.]; Available from: https://www.chemanalyst.com/Pricing-data/mono-ethylene-glycol-4.
    46. Isopropyl Alcohol (IPA) Price Trend and Forecast. 2022 [cited 2023 03 Aug.]; Available from: https://www.chemanalyst.com/Pricing-data/isopropyl-alcohol-31.
    47. Ethylene Oxide Price Trend and Forecast. 2022 [cited 2023 03 Aug.]; Available from: https://www.chemanalyst.com/Pricing-data/ethylene-oxide-1102.
    48. Yu, B.-Y. and C.-C. Tsai, Rigorous simulation and techno-economic analysis of a bio-jet-fuel intermediate production process with various integration strategies. Chemical Engineering Research and Design, 2020. 159: p. 47-65.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2025/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE