簡易檢索 / 詳目顯示

研究生: 張瑋綸
Wei-lun Zhang
論文名稱: 利用X光吸收光譜研究二氧化鈰奈米微粒之室溫鐵磁性
RTFM of CeO2 Nanoparticles Studied by X-Ray Absorption Spectroscopy
指導教授: 陳詩芸
Shih-yun Chen
口試委員: 董崇禮
Chung-li Dong
鄭如茵
Ju-Yin Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 100
中文關鍵詞: 室溫鐵磁性.X光吸收光譜二氧化鈰
外文關鍵詞: X-ray Absorption Spectroscopy(XAS), CeO2, Room Temperature ferromagnetism(RTFM).
相關次數: 點閱:338下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用X光吸收光譜(XAS)分析經過不同製程(熱裂解法、沈澱法)、不同退火處理(Air, Ar+H2)、以及摻雜不同濃度Fe離子之CeO2奈米粉末中Ce及Fe離子價數的變化,配合XRD以及SQUID分析結果,探討氧空缺及所摻雜磁性元素之價數對氧化物(metal-oxides)室溫鐵磁性的影響。
    實驗結果發現,與沈澱法相比,以熱裂解法合成之粉末其氧空缺數量與Ce3+含量較高,但磁性量測結果則顯示以熱裂解法合成之樣品並沒有室溫鐵磁特性,因此,我們推測過多的氧空缺將使室溫鐵磁性下降甚至消失。進一步將熱裂解法合成的粉末在Air下退火,氧空缺數量以及Ce3+含量隨著退火時間增加而逐漸減少,樣品又產生室溫鐵磁性。而以沈澱法合成之粉末在Ar+H2下退火,隨著退火時間增加,氧空缺數量以及Ce3+含量則逐漸上升,飽和磁化強度也隨之變大。
    而在摻雜Fe的樣品,XAS結果顯示Fe為三價的型態存在,並以Fe3+-Vo-Fe3+的型態存在於CeO2中。由Ce與Fe的價數變化分析結果,我們推測摻雜Fe的CeO2奈米顆粒之鐵磁為雙交換與FCE機制共同作用的結果。


    In order to reveal the effect of oxygen vacancy(Vo) and the valance of dopant on room temperature ferromagnetism(RTFM)in Cerium dioxide(CeO2) nanoparticles, X-ray absorption spectroscopy (XAS) was used in this study to analyze the valance of Ce and Fe ions of CeO2 nanoparticles prepared by using different process (thermal decomposition and precipitation), undergo different annealing process (in air or reducing condition), and doping with different amount of Fe ions.
    XAS results show that the concentration of Vo and Ce3+ both higher in CeO2 samples prepared by using thermal decomposition method than using precipitation. However, the former one is not ferromagnetism at room temperature. It is thus supposed that ferromagnetism will be suppressed of samples with too high degree oxygen deficiency. The relationship between oxygen deficiency and ferromagnetism was then build up by measuring the valance of Ce of CeO2 nanoparticles undergo different annealing process.
    On the other hand, for CeO2 nanoparticles doping with Fe ions, XAS analysis indicated that Fe is trivalent. EXAFS analysis implied the formation of Fe3+-Vo-Fe3+. At last, according to the analysis of the valance of Fe and Ce, we suggested that ferromagnetism of Fe doped CeO2 nanoparticles is contributed both by double exchange and FCE mechanism.

    中文摘要 I 英文摘要 II 誌 謝 IV 目 錄 V 圖表索引 VIII 第一章 緒論 1 1.1前言 1 1.2 研究背景 4 1.3 研究目的 6 第二章 理論基礎與文獻回顧 8 2.1 二氧化鈰之性質 8 2.1.1 物理性質與晶體結構 8 2.1.2化學性質 9 2.2磁性理論的研究 11 2.2.1磁性材料的分類 11 2.2.2 磁性研究的演進 15 2.2.3 磁性的機制 20 2.3 X光吸收光譜原理 23 2.3.1 X光吸收光譜的概念 24 2.3.1 X光吸收近邊緣結構(XANES) 27 2.3.3延伸X光吸收精細結構(EXAFS) 29 第三章 實驗 32 3.1 CeO2樣品來源 32 3.2 X光吸收光譜設備與分析量測簡介 34 3.2.1 X光吸收光譜光源 34 3.2.2 量測方法 36 第四章 結果與討論 41 4.1不同製程製備之CeO2奈米顆粒之X光吸收光譜分析 41 4.1.1 XANES之分析結果 41 4.1.2 EXAFS之分析結果 46 4.1.3 SQUID之分析結果與討論 49 4.2改變本質缺陷含量之X光吸收光譜 50 4.2.1 XANES之分析結果 51 4.2.2 EXAFS之分析結果 57 4.2.3 SQUID之分析結果與討論 61 4.3改變非本質缺陷含量之X光吸收光譜 64 4.3.1 XANES之分析結果 64 4.3.2 EXAFS之分析結果 67 4.3.3 SQUID之分析結果與討論 75 第五章 結論 77 參考資料 78

    [1]. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, Vol. 294, pp. 1488-1495 (2001).
    [2]. H. Ohno, F. Matsukura, and Y. Ohno, Japan Society of Applied Physics International , No. 5, pp. 4-13 (2002)
    [3]. H. Akinaga, and H. Ohno, IEEE Transaction on Nanotechnology, Vol. 1, No. 1, pp. 19-31 (2002)
    [4]. B. T. Matthias, R. M. Bozorth and J. H. Val Vleck, Physical Review Letters. Vol. 7, pp. 160 (1961).
    [5]. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science, Vol. 287, pp. 1019 (2000).
    [6]. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma, Science, Vol. 291, pp. 854 (2001).
    [7]. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, National Material, No. 2, pp. 673 (2003).
    [8]. N. H. Hong, J. Sakai, N. T. Huong and V. Brize, Applied Physical Letters, Vol. 87, pp.102505 (2005).
    [9]. M.Venkatesan, C. B. Fitzgerald and J. M. D. Coey, Nature (London), Vol. 430, pp. 630 (2004).
    [10]. R. Monnier and B. Delley, Physical Review Letters, Vol. 87, pp. 157204 (2001).
    [11]. I.S. Elfimov, S. Yunoki and G. A. Sawatzky, Physical Review Letters, Vol. 89, pp. 216403 (2002).
    [12]. A.Zywietz, J. Furthmuller and F. Bechstedt, Physical Review B, Vol. 62, pp. 6854 (2000).
    [13]. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials, Vol. 4, pp. 173 (2005).
    [14]. H.S.Hsu and J. C. A. Huang, Applied Physical Letters, Vol. 88, pp. 242507 (2006).
    [15]. H.S.Hsu and J. C. A. Huang, Applied Physical Letters, Vol. 90, pp. 102606 (2007).
    [16]. M. Y. Ge, H. Wang, E. Z. Lin, J. F. Liu, J. Z. Jiang, Y. K. Li, Z. A. Xu, and H. Y. Li, Applied Physical Letters, Vol. 93, pp. 062505 (2008)
    [17]. A Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald and K. M. Krishnan, Physical Review Letters, Vol. 94, pp. 157204 (2005).
    [18]. J. M. D. Coey, M. Venkatestan, P. Stamenov, C. B. Fitzgerald and L. S. Dorneles, Physical Review B, Vol.72, pp. 024450 (2005).
    [19]. Das. Pemmaraju and S. Sanvito, Physical Review Letters, Vol. 94, pp. 217205 (2005).
    [20]. L. A. D. Faria and S. Trasatti, Journal of Colloid and Interface Science, Vol.167, pp. 352-357 (1994).
    [21]. K. A. Gschneidner, Jr. and L. R. Eyring, “Handbook on the Physics and Chemistry of Rare Earths,” Vol. 3 (1984).
    [22]. N. B. Kirk and J. V. Wood, Journal of Materials Science, Vol. 30, pp. 2171-2175 (1995).
    [23]. X. L. Song, G. Z. Qiu and P. Qu, Rare Metal Materials and Engineering, Vol. 33, pp. 29-34(2004).
    [24]. P. Patsalas, S. Logothetidis, L. Sygellou and S. Kennou, Physical Review B, Vol. 68, pp. 035104 (2003).
    [25]. M. Sugiura , Catalysis Surveys from Asia, Vol. 7, pp. 77-87 (2003).
    [26]. J. Campserveux and P. Gerdanian, Journal of Solid State Chemistry, Vol. 23, pp. 73-92 (1978).
    [27]. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, Vol. 287, pp. 1019 (2000).
    [28]. T. Dietl, Semiconductor Science and Technology, Vol. 17, pp. 377 (2002).
    [29]. Nguyen Hoa Hong, Joe Sakai, Antoine Ruyter, and Virginie Brizé , Applied Physics Letters , Vol. 89, pp. 252504 (2006).
    [30]. N. H. Hong, Joe Sakai, Nathalie Poirot and Virginie Brizé, Physical Review B, Vol. 73, pp. 132404 (2006).
    [31]. A. Sundaresan, R. Bhargavi, N. Rangarajan et al. , Physical Review B , Vol. 74, pp. 161306 (2006)
    [32]. M. Radović, Z. Dohčević-Mitrović, N. Paunović, M. Šćepanović, B. Matović and Z.V. Popović, Acta Physica Polonica A, Vol. 116, pp. 84 (2009).
    [33]. 蔡政宏,磊晶氧化鋅共摻雜鈷、鋁之稀磁性半導體磁性來源的研究,國立成功大學物理研究所碩士論文
    [34]. C.Zener, Physical Review, Vol. 82, pp. 403(1951)
    [35]. P.W Anderson, Physical Review, Vol. 79, pp. 2(1950)
    [36]. 員鳳屏,龐磁阻錳氧化物薄膜之應變效應,國立中山大學物理研究所碩士論文。
    [37]. Handbook published by Taiwan NSRRC.
    [38]. User’s Manual of the 6m-HSGM Beamline at NSRRC. (1996).
    [39]. 向得龍,以X 光吸收光譜探討CePt2+x之電子結構,淡江大學物理研究所碩士論文。
    [40]. E. A. Stern, M. Newville, B. Ravel, Y. Yaceby, D. Haskel, Physics B, Vol. 117, pp. 208-209 (1995).
    [41]. D. C. Koningsberger, and R. Prins, Chemical Analysis, Vol.92 (Wiley 1988).
    [42]. A.Bianconi, L. Incoccia and S.Stipcich, EXAFS and Near edge Structure (Springer-Verlay 1983).
    [43]. D. E. Sayers, E. A. Stern, and F. W. Lytle, Physics Review Letters, Vol. 27, pp. 1024 (1971).
    [44]. H. Winick, S. Doniach , Synchrotron Radiation Research (1980).
    [45]. 安全訓練手冊,新竹國家同步輻射研究中心
    [46]. Boon K. Teo ,EXAFS , Basic Principle and Data Analysis, (Springer-Verlag, Berlin, 1986).
    [47]. Ponnusamy Nachimuthu, Wen-Chen Shih, Ru-Shi Liu, Ling-Yun Jang, Jin-Ming Chen, Journal of Solid State Chemistry, Vol. 149, pp. 408-413 (2000)
    [48]. 彭暘尹,二氧化鈰奈米顆粒室溫鐵磁性的研究,台灣科技大學工程所碩士論文
    [49]. C. L. Chang, C. L. Dong, C. L. Huang, and Y. Y. Chen. Journal of Applied Physics, Vol 87, pp. 3349 (2000)
    [50]. Qi-Ye Wen, Huai-Wu Zhang, Yuan-Qiang Song, Qing-Hui Yang, Hao Zhu and John Q Xiao, Journal of Physics: Condensed Matter, Vol. 19, pp. 246205 (2007)

    QR CODE