簡易檢索 / 詳目顯示

研究生: 陳品宏
Pin-Hong Chen
論文名稱: 摻氮於二氧化鈦/奈米碳管束陣列之異質結構應用於場電子發射
Characteristics and Enhanced Field Emission Properties of N-doped TiO2/CNT Bundle Arrays
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 李奎毅
Kuei-Yi Lee
陳瑞山
Ruei-San Chen
程光蛟
Kwong-Kau Tiong
趙良君
Liang-Chiun Chao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 94
中文關鍵詞: 場電子發射奈米碳管二氧化鈦電漿處理
外文關鍵詞: field emission, CNT, TiO2, plasma treatment
相關次數: 點閱:330下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要利用冷壁式有機金屬化學氣相沉積法 (Cold-wall metal organic chemical vapor deposition, MOCVD) 製備銳鈦礦二氧化鈦 (Anatase titanium dioxide, A-TiO2) 於奈米碳管束陣列上 (Carbon nanotube bundle arrays, CNTBAs)。並藉由電漿處理 (Plasma treatment) 將氮氣摻至銳鈦礦二氧化鈦。之後觀察晶體表面及結構特性,並探討在場發射之應用。
    使用場發射電子顯微鏡 (Field-emission scanning electron microscopy, FESEM)、穿透掃描式電子顯微鏡 (Transmission electron microscopy, TEM)、拉曼光譜儀 (Raman spectroscopy) 與X 射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 分析奈米複合材料之表面形貌、晶體大小、晶體結構及晶體化學鍵結與組成。從場發射電子顯微鏡可得知奈米微粒狀的銳鈦礦二氧化鈦均勻大小的附著在奈米碳管壁上;拉曼光譜儀鑑定銳鈦礦二氧化鈦結構成長於奈米碳管結構上並發現新的振動模式D^'-band出現;X 射線光電子能譜儀觀察N 1s、Ti 2p及O 1s元素,得知經過氮氣摻雜後,證實有O-Ti-N鍵結形成;藉由穿透掃描式電子顯微鏡 (Transmission electron microscopy, TEM) 觀察到銳鈦礦二氧化鈦無規則性方向沉積於奈米碳管上。
    在場發射實驗中,銳鈦礦二氧化鈦/奈米碳管與摻氮於銳鈦礦二氧化鈦/奈米碳管奈米複合材料在10 A/cm2 分別有1.8 V/m及1.0 V/m的起始電場與在1 mA/cm2 有3.6 V/m及1.9 V/m的臨界電場。而場發射增強因子分別為2700與3000。結果顯示摻氮後能降低銳鈦礦二氧化鈦/奈米碳管束陣列的起始電場及臨界電場,並且擁有較佳穩定性。因此奈米複合結構在場發射研究中是有價值的。


    Anatase titanium dioxide (A-TiO2) were grown on top of carbon nanotube (CNT) bundle arrays by metal organic chemical vapor deposition (MOCVD) using titanium-tetraisopropoxide (TTIP, Ti[OCH(CH3)2]4) as the source reagents. The N-doped A-TiO2/CNTs nanocomposite was then fabricated with nitrogen plasma treatment.
    The surface morphology, structural and spectroscopic properties of the A-TiO2/CNTs and N-doped A-TiO2/CNTs nanocomposites were characterized using Field-emission scanning electron microscopy (FESEM), Raman spectroscopy, Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The FESEM image showed a dense coalescence of A-TiO2 with uniform size distribution on the nanotube walls. Raman spectra revealed that nanostructural A-TiO2 had been deposited on the CNT nanocrystals and a new vibration mode of D^'-band at higher wavenumber side was also found. The XPS spectra in the region of N 1s, Ti 2p and O 1s provided a conclusive evidence of the formation of O-Ti-N bond during nitrogen treatment process. The TEM image of A-TiO2 deposited CNT showed uniform distribution, and random directions of A-TiO2 had been grown on the surface of the CNT.
    The current density versus electric field measurements yielded turn-on field of 1.8 V/m and 1.0 V/m at a current density of 10 A/cm2, threshold field of 3.6 V/m and 1.9 V/m at a current density of 1 mA/cm2, and field enhancement factor of 2700 and 3000 for the A-TiO2/CNTs and N-doped A-TiO2/CNTs nanocomposites, respectively. Long term stability studies were also carried out. The results indicated that nitrogen doping decreased the turn-on field and threshold field of A-TiO2/CNTs, providing stable field emission applications. The probable mechanisms of field emission enhancement for N-doped A-TiO2/CNTs composite were proposed and discussed.

    中文摘要--------------------------------------------------------------------I Abstract------------------------------------------------------------------III 誌謝------------------------------------------------------------------------V 目錄----------------------------------------------------------------------VII 圖目錄----------------------------------------------------------------------X 表索引--------------------------------------------------------------------XIV 第一章 緒論-----------------------------------------------------------------1 1.1 研究動機----------------------------------------------------------------1 1.2 奈米碳管----------------------------------------------------------------2 1.3 二氧化鈦----------------------------------------------------------------4 1.4 銳鈦礦二氧化鈦/奈米碳管異質結構-----------------------------------------6 1.5 摻氮至銳鈦礦二氧化鈦/奈米碳管-------------------------------------------9 1.6 場電子發射-------------------------------------------------------------11 第二章 實驗方法與步驟------------------------------------------------------14 2.1 實驗流程---------------------------------------------------------------14 2.1.1 實驗流程圖-----------------------------------------------------------14 2.2 樣品製備---------------------------------------------------------------15 2.2.1 實驗藥品及規格-------------------------------------------------------15 2.2.2 實驗中基板清洗所使用之清潔劑-----------------------------------------16 2.3 實驗步驟---------------------------------------------------------------17 2.3.1 清洗基板-------------------------------------------------------------17 2.3.2 黃光微影技術---------------------------------------------------------18 2.3.3 電子束蒸鍍法---------------------------------------------------------21 2.3.4 奈米碳管成長與實驗步驟-----------------------------------------------24 2.3.5 有機金屬化學氣相沉積 (Cold-wall metal organic chemical vapor deposition, MOCVD) 設備----------------------------------------------------------------27 2.3.6 二氧化鈦奈米結構沉積步驟---------------------------------------------29 2.3.7 電漿處理 ( Plasma treatment )----------------------------------------30 2.4 特性分析方法-----------------------------------------------------------33 2.4.1 拉曼光譜儀 (Raman spectroscopy)--------------------------------------33 2.4.2 場發射掃描式電子顯微鏡 (Field-emission scanning electron microscopy, FESEM)---------------------------------------------------------------------36 2.4.3 X射線光電子能譜儀 (X-ray photoelectron spectrometer, XPS)------------37 2.4.4 描穿透式電子顯微鏡 (Transmission electron microscopy, TEM )----------39 2.4.5 場發射量測系統-------------------------------------------------------40 第三章 結果與討論----------------------------------------------------------43 3.1 A-TiO2/CNT/Si 之成長與特性分析-----------------------------------------43 3.1.1 FESEM 影像圖分析-----------------------------------------------------44 3.1.2 Raman 譜線分析-------------------------------------------------------48 3.1.3 XPS 成分分析---------------------------------------------------------50 3.1.4 TEM 分析-------------------------------------------------------------52 3.1.5 場發射之量測與分析---------------------------------------------------54 3.1.6 Long-term 之量測與分析-----------------------------------------------56 3.2 N-doped A-TiO2/CNT/Si 之成長與特性分析---------------------------------60 3.2.1 FESEM 影像圖分析-----------------------------------------------------60 3.2.2 Raman 譜線分析-------------------------------------------------------63 3.2.3 XPS 成分分析---------------------------------------------------------65 3.2.4 場發射之量測與分析---------------------------------------------------69 3.2.5 Long-term 之量測與分析-----------------------------------------------71 第四章 結論----------------------------------------------------------------74 參考文獻-------------------------------------------------------------------76

    [1]A. Navitski, P. Serbun, and G. Muller, “Field emission properties of aligned pure and TiO2-coated carbon nanotube block arrays,” Int. Vacuum Nanoelectronics Conf., Palo Alto, CA, pp. 167-168, 2010.
    [2]J. S. Suh, K. S. Jeong, J. S. Lee, and C. S. Lee, “Study of the field-screening effect of highly ordered carbon nanotube arrays,” Appl. Phys. Lett., vol. 80, pp. 2392-2394, 2002.
    [3]L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, and E. Schaller, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett., vol. 76, pp. 2071-2073, 2000.
    [4]Y. Alivov, M. Klopfer, and S. Molloi, “Enhanced field emission from clustered TiO2 nanotube arrays,” Appl. Phys. Lett., vol. 99, pp. 063104, 2011.
    [5]H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, “Work functions and surface functional groups of multiwall carbon nanotubes,” J. Phys. Chem., vol. 103, pp. 8116-8121, 1999.
    [6]G. Liu, F. Li, D. W. Wang, D. M. Tang, C. Liu, X. Ma, G. Lu, and H. M. Cheng, “Electron field emission of a nitrogen-doped TiO2 nanotube array,” Nanotechnology, vol. 19, pp. 025606-025611, 2008.
    [7]S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.

    [8]D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, vol. 363, pp. 605-607, 1993.
    [9]Y. Li, J. Liu, Y. Wang, and Z. L. Wang, “Preparation of monodispersed Fe−Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes,” Chem. Mater., vol. 13, pp. 1008-1014, 2001.
    [10]T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled manotubes by laser vaporization,” Chem. Phys. Lett, vol. 243, pp. 49-54, 1995.
    [11]G. S. Choi, K. H. Son, and D. J. Kim, “Fabrication of high performance carbon nanotube field emitters,” Microelectron. Eng., vol. 66, pp. 206-212, 2003.
    [12]B. J. Landi, R. P. Raffaells, S. L. Castro, and S. G. Bailey, “Single-wall carbon nanotube-polymer solar cells,” Prog. Photovolt: Res. Appl., vol. 13, pp. 165-172, 2005.
    [13]張健智,「製備二氧化鈦/奈米複合碳材與其在酸性電解液之電化學特性研究」,碩士論文, 元智化材。
    [14]Y. Alivov1, M. Klopfer, and S. Molloi, “Effect of TiO2 nanotube parameters on field emission properties,” Nanotechnology, vol. 21, pp. 505706-505710, 2010.
    [15]M. Miyauchi, H. Tokudome, Y. Toda, T. Kamiya, and H. Hosono, “Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction,” Appl. Phys. Lett., vol. 89, pp. 043114, 2006.
    [16]Y. Alivov, M. Klopfer, and S. Molloi, “Enhanced field emission from clustered TiO2 nanotube arrays,” Appl. Phys. Lett., vol. 99, pp. 063104, 2011.
    [17]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. vol. 6, pp. 215-218 (2006).
    [18]H. G. Yun, J. H. Park, B. S. Bae, and M. G. Kang, “Dye-sensitized solar cells with TiO2 nanoparticles on TiO2 nanotube grown Ti substrates,” J. Mater. Chem., vol. 21, pp. 3558-3561, 2011.
    [19]L. Francioso, D. S. Presicce, M. Epifani, P. Siciliano, and A. Ficarella, “Response evaluation of TiO2 sensor to flue gas on spark ignition engine and in controlled environment,” Sen. Act. B: Chem., vol. 107, pp. 563-571(2005).
    [20]A. Kolmakov and M. Moskovits, “Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures,” Annu. Rev. Mater. Res., vol. 34, pp. 151-180, 2004.
    [21]O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology, vol. 18, pp. 105704, 2007.
    [22]R. Rabadyand and I. Avrutsky, “Titania, silicon dioxide, and tantalum pentoxide waveguides and optical resonant filters prepared With radio-frequency magnetron sputtering and annealing,” Appl. Opt., Vol. 44, pp. 378-383, 2005.
    [23]林士豪,「以二氧化鈦薄膜為矽及砷化鎵金氧半結構介電層之特性分析」,碩士論文, 國立中山大學。
    [24]A Labouriau and W. L. Earl, “Titanium solid-state NMR in anatase, brookite and rutile,” Chem. Phys. Lett., vol. 270, pp. 278-284, 1997.
    [25]T. Sekiya, S. Ohta, S. Kamei, M. Hanakawa, and S. Kurita, “Raman spectroscopy and phase transition of anatase TiO2 under high pressure,” J. Phys. Chem. Solids, vol. 62, pp. 717-721, 2001.
    [26]N. Hosaka, T. Sekiya, and S. Kurita, “Excitonic state in anatase TiO2 single crystal,” J. Lumin., vol. 72-74, pp. 874-875 , 1994.
    [27]K. Okimura, “Low temperature growth of rutile TiO2 films in modified rf magnetron sputtering,” Surf. Coat. Technol., vol. 135, pp. 286-290 , 2001.
    [28]JCPDS card no. 82-2243, International centre for diffraction data, Newtown Square, PA, USA.
    [29]K. X. He, J. Su, D. Z. Guo, Y. J. Xing, and G. M. Zhang, “Mechanical fabrication of carbon nanotube/TiO2 nanoparticle composite films and their field-emission properties,” Phys. Status Solidi, vol. 208, pp. 2388-2391 , 2011.
    [30]G. Liu, F. Li, D. W. Wang, D. M. Tang, C. Liu, X. Ma, G. Q. Lu, and H. M. Cheng, “Electron field emission of a nitrogen-doped TiO2 nanotube array,” Nanotechnology, vol. 19, pp. 025606, 2008.
    [31]D. Temple, “Recent progress in field emitter array development for high performance applications,” Mater. Sci. Eng., R, vol. 24, pp.185-239, 1999.
    [32]A. Korotcov, Y. S. Huang, T. Y. Tsai, D. S. Tsai, and K. K. Tiong, “Effect of length, spacing and morphology of vertically aligned RuO2 nanostructures on field emission properties,” Nanotechnology, Vol. 17, pp. 3149-3153, 2006.
    [33]簡翰中,「化學分析電子儀在分析技術上的最新應用」, 電子月刊, 第十卷, 第七期, 第123-132頁, 2004。
    [34]S. Fujii, S. I. Honda, H. Machida, H. Kawai, and K. Ishida, “Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect,” Appl. Phys. Lett., vol. 90, pp. 153108, 2007.
    [35]H. Hirayama, Y. Kawamoto, Y. Ohshima, and K. Takayanagi, “Nanospot welding of carbon nanotubes,” Appl. Phys. Lett., vol. 79, pp. 1169-1171, 2001.
    [36]Y. Yang, X. Wang, C. Sun, and L. Li, “Electron field emission and photoluminescence of anatase nanotube arrays,” J. Am. Ceram. Soc., vol. 91, pp. 4109-4111, 2008.
    [37]W. S. Bacsa, D. Ugarte, A. Châtelain, and W. A. de Heer, “High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes,” Phys. Rev. B, vol. 50, pp. 15473-15476, 1994.
    [38]J. Libera and Y. Gogotsi, “Hydrothermal synthesis of graphite tubes using Ni catalyst,” Carbon, vol. 39, pp. 1307-1318, 2001.
    [39]H. Berger, H. Tang, and F. Lévy, “Growth and Raman spectroscopic characterization of TiO2 anatase single crystals,” J. Cryst. Growth, vol. 130, pp. 108-112, 1993.
    [40]J. M. C. Moreno and M. Yoshimura, “Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon,” J. Am. Chem. Soc, vol. 130, pp. 741-742, 2001.
    [41]T. Kyotani, Li-fu Tsai, and A. Tomita, “Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film,” Chem. Mater., vol. 8, pp. 2109-2113, 1996.
    [42]S. Maldonado, S. Morin, and K. J. Stevenson, “Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping,” Carbon, vol. 44, pp. 1429-1437, 2006.
    [43]Y. H. Lai, H. B. Lian, and K. Y. Lee, “Field emission of vertically aligned carbon nanotubes with various content of nitrogen,” Rel. Mat, vol. 18, pp. 544-547, 2009.
    [44]Y. Cong, J. Zhang, F. Chen, and M. Anpo, “Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity,” J. Phys. Chem. C, vol. 111, pp. 6976-6982, 2007.

    QR CODE