簡易檢索 / 詳目顯示

研究生: 林育廷
Yu-Ting Lin
論文名稱: 二氧化鈦奈米粉末室溫鐵磁性來源之研究
The Origin of Room-Temperature Ferromagnetism in TiO2 Nanoparticles
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 宋振銘
Jenn-Ming Song
鄭如茵
Ju-Yin Cheng
顏得宗
Der-Chung Yan
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 107
中文關鍵詞: 二氧化鈦溶膠凝膠法室溫鐵磁性
外文關鍵詞: Titanium dioxide, Sol-gel method, Room-temperature ferromagnetism
相關次數: 點閱:373下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為探討氧空缺及粒徑在未摻雜磁性元素之氧化物半導體(un-doped metal-oxides)的鐵磁性來源中所扮演的角色,本實驗利用溶膠凝膠法(sol-gel)製備二氧化鈦(TiO2)奈米粉末,經由改變製程參數(煆燒溫度),以及不同後續熱處理條件(氣氛、溫度、時間),可得到不同粒徑、不同氧空缺含量的TiO2奈米粉末。利用XRD、TEM、SQUID及XAS分析TiO2奈米粉末的結晶性、粒徑大小、磁性及金屬離子之價態,以解釋二氧化鈦室溫鐵磁性來源之機制。
    實驗結果顯示,經300C煆燒的粉末粒徑為12.6nm,其晶相為Anatase相,結晶性良好,但有聚集的現象,在室溫下為鐵磁(飽和磁矩Ms為0.003emu/g);此樣品在還原氣氛(Ar + 3% H2)下進行熱處理,飽和磁矩隨退火時間增長而變大,經600C,退火9hr的樣品,其Ms為0.038emu/g。XAS分析結果顯示樣品中Ti3+的數量隨退火時間增長而變多,表示氧空缺的量增加。而在氧化的氣氛下退火,磁矩變小;經600C,退火9hr的樣品,為超順磁,XAS結果顯示Ti3+的數量變少,表示氧空缺確實有減少。
    在尺寸的影響方面,在較高溫度(600C)煆燒的粉末粒徑為38.9nm,同樣有室溫鐵磁的特性,其飽和磁矩較300C煆燒的樣品高,為0.015emu/g。XAS結果顯示,與300C煆燒的樣品相比,此樣品中有較高比例的Ti3+。因此,此樣品在O2下經過9hr退火後仍有室溫鐵磁,Ms為0.001emu/g。本研究結果指出,未摻雜磁性元素之TiO2奈米粉末,其室溫鐵磁的特性確實與氧空缺含量有關。研究結果也發現,製程參數及熱處理條件有可能使樣品顆粒粒徑產生變化,導致氧空缺數量改變,而影響樣品的磁性。


    In order to reveal the role of particle size and oxygen vacancy play in the
    formation of room temperature (RT) ferromagnetism in titanium oxide (TiO2), TiO2 nanoparticles (NPs) prepared by sol-gel method were investigated in this study. Various synthesis parameters and annealing condictions were performed to
    change the particle size and the oxygen vacancy concentration of NPs. The
    microstructure was investigated by XRD and TEM, the valence of Ti was analyzed
    by XANES, and magnetic measurement was performed by SQUID at RT.
    The experimental results show that TiO2-300 NPs (calcined at 300℃) is
    ferromagnetic at room temperature (saturation moment Ms = 0.003 emu/g). It is
    anatase and the particle size is 12.6 nm. The saturation moment and the ratio of Ti3+ both increase with extending the time of reduction treatment. After annealing in Ar+3%H2 at 600℃ for 9 hrs, Ms is 0.038 emu/g. On the other hand, Ms and the ratio of Ti3+ both decrease while NPs were annealed in O2. TiO2 NPs become superparamagnetic after annealed in O2 at 600℃ for 9 hrs.
    In addition, according to the series comparisons of magnetism of NPs with
    same Ti3+ ratio, it is found that RTFM is also size-dependent. The Ms is higher of NPs with smaller particle size. Therefore, it is suggested that oxygen vacancy exist in surface will induce more moment than that in bulk.

    中文摘要.............................................................Ⅰ 英文摘要.............................................................Ⅱ 誌 謝.............................................................Ⅲ 目 錄.............................................................Ⅳ 圖表索引.............................................................Ⅷ 第一章 緒論..........................................................1 1.1前言..............................................................1 1.2研究動機..........................................................8 1.3研究目的及內容....................................................9 第二章 文獻回顧......................................................10 2.1磁性基本理論......................................................10 2.1.1磁性起源........................................................10 2.1.2磁性材料之分類..................................................10 2.2磁性研究的演進....................................................14 2.2.1理論計算半導體薄膜居禮溫度......................................14 2.2.2薄膜系統摻雜過渡金屬元素........................................15 2.2.3薄膜系統未摻雜過渡金屬元素......................................16 2.2.4奈米顆粒系統摻雜過渡金屬元素....................................19 2.2.5奈米顆粒系統未摻雜過渡金屬元素..................................22 2.3 TiO2性質結構及其應用.............................................24 2.4各種TiO2製備方法..................................................28 2.4.1氯化法..........................................................28 2.4.2水熱法..........................................................28 2.4.3熱水解法........................................................29 2.4.4微乳膠法........................................................29 2.4.5沉澱法..........................................................30 2.4.6溶膠凝膠法......................................................31 2.5溶膠凝膠法........................................................32 2.5.1溶膠凝膠法的優點................................................34 2.5.2溶膠凝膠法的影響因素............................................34 第三章 實驗部分......................................................38 3.1實驗步驟..........................................................38 3.1.1 TiO2粉末之製備.................................................38 3.1.2 TiO2粉末之熱處理...............................................39 3.2 TiO2之性質鑑定...................................................40 3.2.1 X光粉末繞射儀..................................................41 3.2.2場發射穿透式電子顯微鏡..........................................43 3.2.3超導量子干涉磁化儀..............................................44 3.2.4 X光能量吸收光譜................................................45 第四章 結果與討論....................................................49 4.1 TiO2合成參數的影響...............................................49 4.2氧化還原處理溫度對TiO2性質的影響..................................56 4.2.1 XRD結果分析....................................................56 4.2.2 TEM結果分析....................................................59 4.2.3 SQUID結果分析..................................................62 4.2.4 XAS結果分析....................................................65 4.3氧化還原處理時間對TiO2性質的影響..................................69 4.3.1 XRD結果分析....................................................69 4.3.2 TEM結果分析....................................................71 4.3.3 SQUID結果分析..................................................73 4.3.4 XAS結果分析....................................................75 4.4粒徑大小對於TiO2氧化還原能力的影響................................78 4.4.1 XRD結果分析....................................................78 4.4.2 SQUID結果分析..................................................80 4.4.3 XAS結果分析....................................................81 第五章 結論..........................................................84 參考資料.............................................................86 授權書...............................................................91

    [1]. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, Vol. 294, pp. 1488-1495 (2001)
    [2]. H. Ohno, F. Matsukura, and Y. Ohno, Japan Society of Applied Physics International , No. 5, pp. 4-13 (2002)
    [3]. H. Akinaga, and H. Ohno, IEEE Transaction on Nanotechnology, Vol. 1, No. 1, pp. 19-31 (2002)
    [4]. R. A. de Grot , F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Physical Review Letters, Vol. 50, pp. 2024 (1983)
    [5]. S. M. Watts, S. Wirth, S. Von Molnr, A. Barry, and J. M. D. Coey, Physical Review B, Vol. 61, pp. 9621 (2000)
    [6]. J. H. Park , E. Vescovo, H. J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature, Vol. 392, pp. 794 (1998)
    [7]. J. J. Versluijs, M. A. Bari, J. M. D. Coey, Physical Review Letters, Vol. 87, pp. 026601 (2001)
    [8]. K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature, Vol. 395, pp. 677 (1999)
    [9]. R. P. Borges , R. M. Thomas, C. Cullinan, J. M. D. Coey, R. Suryanarayanan, L. Ben-Dor, L. Pinsard-Gaudart, and A. Revcolevschi, Journal of Physics : Condens Matter, Vol. 11, pp. 445-450 (1999)
    [10]. J. Furdyna, and J. Kossut, Semiconductor and Semimetals, Vol. 25, Academic, New York (1988)
    [11]. J. Kossut, and W. Dobrowolski, in: Buschow, K.H.J.(Ed.), Handbook of Magnetic Materials, Vol. 7, North-Hoalland, Amsterdam (1993)
    [12]. T. Dietl, (Diluted) Magnetic Semiconductors, in: T. S. Moss (Ed.),
    Handbook of Semiconductors , Vol. 3B, North-Hoalland, Amsterdam (1994)
    [13]. T. Baron, S. Tatarenko, K. Saminadayar, N. Magnea, and J. Fontenille, Applied Physics Letters, Vol. 65, pp. 1284-1286 (1994)
    [14]. A. Haury, and A. Wasiela, Applied Physics Letters, Vol. 79, pp. 511-514 (1997)
    [15]. D. Ferrand, and J. Cibert, Journal of Crystal Growth, Vol. 214-215,
    pp. 387-390 (2000)
    [16]. M. I. Aliyev, I. S. Dadashev, and G. I. Safaraliyev, Physics of Metals and Metallography, Vol. 49, pp. 166 (1980)
    [17]. Soshin Chikazumi著,張煦、李學養合譯,磁性物理學,聯經出版事業公司,第8-11頁(1982)
    [18]. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science,
    Vol. 287, pp. 1019 (2000)
    [19]. T. Dietl, Semiconductor Science and Technology, Vol. 17, pp. 377 (2002)
    [20]. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Y. Koshihara, and H. Koinuma, Science, Vol. 291, pp. 854 (2001)
    [21]. W. K. Park, R. J. Ortega-Hertogs, J. Moodera, A. Punnoose, and M. S. Seehra, Journal of Applied Physics, Vol. 91, pp. 8093 (2002)
    [22]. Y. Matsumoto, R. Takahashi, M. Murakami, T. Koida, X. J. Fan, T. Hasegawa, T. Fukumura, M. Kawasaki, S. Y. Koshihara, H. Koinuma, Japanese Journal of Applied Physics, Part 2, Vol. 40, pp. 1204 (2001)
    [23]. M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature, Vol. 430, pp. 630 (2004)
    [24]. N. H. Hong, J. Sakai, A. Ruyter, and V. Brizé, Applied Physics Letters, Vol. 89, pp. 252504 (2006)
    [25]. N. H. Hong, J. Sakai, and N. T. Huong, Physical Review B, Vol. 72,
    pp. 045336 (2005)
    [26]. N. H. Hong, and J. Sakai, Physical Review B, Vol. 73, pp. 132404 (2006)
    [27]. T. Fukumura, Y. Yamada, H. Toyosaki, and T. Hasegawa, Applied Surface Science, Vol. 223, pp. 62 (2004)
    [28]. J. D. Bryan, S. M. Heald, S. A. Chambers, and D. R. Gamelin, Journal of American Chemical. Society, Vol. 126, pp. 11640 (2004)
    [29]. G. Glaspell ,and A. Manivannan, Journal of Cluster Science, Vol. 16, pp. 501 (2005)
    [30]. S. Maensiri, P. Laokul, and J. Klinkaewnarong, Journal of Magnetism and Magnetic Materials, Vol. 302, pp. 448 (2006)
    [31]. A. Manivannan, G. Glaspell, and M. S. Seehra, Journal of Applied Physics, Vol. 94, pp. 6994 (2003)
    [32]. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Physical Review B, Vol. 74, pp. 161306 (2006)
    [33]. B. lian, and Y. Zhong, Phase Diagrams for Ceramists Figure, The American Ceramic Society, Inc. Vol. 76, pp. 4150-4999 (1975)
    [34]. A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis
    Fundamentals and Application, BKC, Inc. pp. 125 (1999)
    [35]. R. R. Bacsa, and M. Gratzel, Journal of the American Ceramic Society, Vol. 79, pp. 2185 (1996)
    [36]. H. K. Park, D. K. Kim, and C. H. Kim, Journal of the American Ceramic Society, Vol. 80, pp. 743 (1997)
    [37]. C. H. Hung, and B. J. Marinas, Environmental Science and Technology, Vol. 31, pp. 562 (1997)
    [38]. A. Lars, and M. Alison, Diamond and Related Materials, Vol. 7, pp.
    261 (1998)
    [39]. M. Tan, G. Wang, and L. Zhang, Journal of Applied Physics, Vol. 80, pp. 1186 (1996)
    [40]. M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi, and M. Toyoda, International Journal of Inorganic Materials, Vol. 3, pp. 809-811(2001)
    [41]. H. K. Park, D. K. Kim, and C. H. Kim, Journal of American Chemical Society, Vol. 80, pp. 743-749 (1997)
    [42]. H. K. Park, Y. T. Noon, D. K. Kim, and C. H. Kim, Journal of American Chemical Society, Vol. 79, pp. 2727-2734 (1996)
    [43]. Y. Wei, R. Wu, and Y. Zhang, Materials Letters, Vol. 41, pp. 101-103 (1999)
    [44]. E. J. Kim, S. H. Oh, and S. H. Hahn, Chemical Engineering Communications, Vol. 187, pp. 171-184 (2001)
    [45]. 徐莉、劉琴、祁欣、周志萍,「溶膠-凝膠技術制備奈米材料的研究進展」,南京林業大學學報,第二十六卷,第81-84頁(2002)
    [46]. E. R. La Serra, Y. Charbouillot, P. Baudry, and M. A. Aegerter, Journal of Non-Crystalline Solids, Vol. 121, pp. 323 (1990)
    [47]. D. P. Birnie III, S. M. Melpolder, B. D. Fabes, B. J. Zelinski, and M.
    J. Hanrahan, Optical Engineering, Vol. 32, No. 11, pp. 2960 (1993)
    [48]. W. E. Torruellas, L. A. Weller-Brophy, R. Zanoni, G. I. Stegeman, Z.
    Osborne, and B. J. J. Zelinski, Applied Physics Letters, Vol. 58, No. 11, pp. 1128 (1991)
    [49]. P. Baudry, A. C. M. Rodriguez, M. A. Aegerter, and L. O. Bulhöes,
    Journal of Non-Crystalline Solids, Vol. 121, pp. 319 (1990)
    [50]. M. Guglielmi, P. Colombo, L. Mancinelli Degli Esposti, G. C. Righini,S. Pelli, and V. Rigato, Journal of Non-Crystalline Solids, Vol. 147,
    pp. 641 (1992)
    [51]. M. A. Macedo, L. H. Dall'Antonia, B. Valla, and M. A. Aegerter, Journal of Non-Crystalline Solids, Vol. 147-148, pp. 792 (1992)
    [52]. A. Maddalena, R. D. Maschio, S. Dire, and A. Raccanelli, Journal of Non-Crystalline Solids, Vol. 121, pp. 365 (1990)
    [53]. B. E. Yoldas, Journal of Materials Science, Vol. 21, pp. 1087
    (1986)
    [54]. K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, and Y.
    Iguchi, Journal of Materials Science, Vol. 29, pp. 1617 (1994)
    [55]. X. Z. Ding, Z. Z. Qi, and Y. Z. He, Jounal Materials Science Letters,
    Vol. 14, pp. 21 (1995)
    [56]. Y. Xu, W. Zheng, and W. Liu, Journal of Photochemistry and Photobiology A, Vol. 122, pp. 57-60 (1999)
    [57]. F. Cot, A. Larbot, G. Nabias, and L. Cot, Journal of the European
    Ceramic Society, Vol. 18, pp. 2175 (1998)
    [58]. S. Sakka, and K. Kamiya, Journal of Non-Crystalline Solids, Vol. 42,
    pp. 403 (1980)
    [59]. K. Kamiya, K. Tanimoto, and T. Yoko, Journal of Materials Science Letters, Vol. 5, pp. 402 (1986)
    [60]. D. C. Koningsberger, and R. Prins, X-ray Absorption principles,
    applications, techniques of EXAFS, EXAFS and XANES, pp. 574 (1988)
    [61]. J. J. Rehr, and R. C. Albers, Reviews of Modern Physics, Vol. 72,
    pp. 621 (2000)
    [62]. N. L. Wu, S. Y. Wang, and I. A. Rusakova, Science, Vol. 285, pp. 1375 (1999)
    [63]. R. A. Spurr, and W. Myers, Analytical Chemistry, Vol. 29, pp. 760-762 (1957)
    [64]. F. Cot, A. Larbot, G. Nabias, L. Cot, Journal of The European Ceramic Society, Vol. 18, pp. 2175-2181 (1998)
    [65]. S. Sakka, and K. Kamiya, Journal of Non-Crystalline Solids, Vol. 42,pp. 403-421 (1980)
    [66]. K. Kamiya, K. Tanimoto, and T. Yoko, Journal of Materials Science
    Letters, Vol. 5, pp. 402 (1986)
    [67]. K. E. O’Shea, E. Pernas, J. Saiers, Langmuir, Vol. 15, pp. 2071-2076 (1999)
    [68]. R. Brydsoni, H. Sauer, W. Engel, J. M. Thomas, E. Zeitler, N.Kosugill, and H. Kuroda, Journal of Physics-Condensed Matter, Vol. 1, pp. 797-812 (1989)
    [69]. C. C. Calvert, W. M. Rainforth, D. C. Sinclair, and A. R. West, Micron, Vol. 37, pp. 412-419 (2006)
    [70]. G. Radtke, S. Lazar, and G. A. Botton, Physical Review B, Vol. 74,
    pp. 155117 (2006)

    無法下載圖示 全文公開日期 2015/01/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE