簡易檢索 / 詳目顯示

研究生: Ataka Badrud Duja
Ataka Badrud Duja
論文名稱: Value-Added Chemicals from Ethylene Glycol (EG) Oxidation using Pd/TiO2 Catalyst in Alkaline Media
Value-Added Chemicals from Ethylene Glycol (EG) Oxidation using Pd/TiO2 Catalyst in Alkaline Media
指導教授: 黃炳照
Bing Joe Hwang
陳良益
Liang-Yih Chen
口試委員: 陳良益
Liang-Yih Chen
蘇威年
Wei-Nien Su
蔡孟哲
Meng-Che Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 172
中文關鍵詞: Pd nanoparticlesTiO2 supportEG oxidationselectivityreaction mechanism
外文關鍵詞: Pd nanoparticles, TiO2 support, EG oxidation, selectivity, reaction mechanism
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract i 摘要 ii Acknowledgment iii Table of Contents iv List of Figures ix List of Tables xii List of Equations xiv List of Abbreviations xvii Chapter 1 Introduction 1 1.1 Hydrogen as Clean Alternative Fuels to Fossil Fuels 1 1.2 Review of OER-Based Hydrogen Generation 2 1.3 New Concept of EGO-Based Hydrogen Generation 4 1.4 Value-Added Chemicals from EGO 7 1.5 Introducing Palladium Supported on an Anatase TiO2 for EGO 9 Chapter 2 Literature Reviews 10 2.1 Ethylene Glycol and Its Electro-oxidation Products 10 2.1.1 EGO-Based Hydrogen Generation 13 2.1.2 EGO Reaction Pathways 15 2.1.3 Palladium-Based Catalyst in EGO 19 2.1.4 Electrolyte Concentration Effect in EGO 24 2.1.5 Applied Potential Effect in EGO 28 2.2 Electrocatalyst - Palladium on Titanium Dioxide (Pd/TiO2) 29 2.2.1 Palladium-Based Catalyst 30 2.2.2 Titanium Dioxide (TiO2) as Catalyst Support 37 2.2.3 The Role of Pd/TiO2 Nano-Catalyst 45 2.3 Qualitative and Quantitative Product Distribution Analysis 48 2.3.1 Fourier Transform Infrared, FTIR 49 2.3.2 Nuclear Magnetic Resonance, NMR 52 2.3.3 Gas Chromatography, GC 55 2.4 Value-Added Product Separation and Purification Process 59 2.5 Motivation and Objectives of the Study 61 2.5.1 Motivation 61 2.5.2 Objectives 62 Chapter 3 Experimental Section 63 3.1 General Experiment Section 63 3.1.1 List and Specifications of Chemicals 63 3.1.2 List and Specifications of Materials, Equipment, and Instruments 65 3.2 Catalyst Synthesis Procedure 67 3.2.1 Synthesis of TiO2 by Hydrothermal Method 68 3.2.2 Synthesis of Pd/TiO2 by Ethylene Glycol Reduction Method 68 3.3 Catalyst Characterization 69 3.3.1 Physical Characterization 70 3.3.2 Crystallinity and Morphology 71 3.3.3 Local Coordination Environment 71 3.3.4 Electron Transfer at the Metal-Semiconductor Oxide 72 3.3.5 Oxidation State Near-Surface and Electron Transfer Near-Surface 72 3.4 Electrode Preparation and Electrochemical Measurement 73 3.4.1 Half-Cell Reactor Set-Up 73 3.4.2 Electrochemical Behavior and Performance 74 3.5 Electrode Preparation and EGO-Based Hydrogen Production 75 3.5.1 Divided-Cell Reactor Set-Up 75 3.5.2 EGO-Based Hydrogen Production Measurement 76 3.6 Product Analysis in EGO and HER 77 3.7 Quantitative Analysis in EGO 78 3.7.1 Liquid Product Concentration 78 3.7.2 Gas Product Concentration 80 3.7.3 Ethylene Glycol Conversion 82 3.7.4 Product Selectivity 83 3.7.5 Faradaic Efficiency 83 3.7.6 Energy Consumption to Produce Glycolate 84 3.8 Quantitative Analysis in HER 85 3.8.1 Gas Product Concentration 85 3.8.2 Faradaic Efficiency 85 3.8.3 Energy Consumption to Produce H2 86 3.9 Quantitative Analysis in EGO-based H2 Generation System 87 3.9.1 Production of Glycolate and H2 in Coupled Reaction System 87 3.9.2 Estimated Production Cost to Produce Glycolate 87 3.9.3 Estimated Production Cost to Produce H2 89 Chapter 4 Results and Discussion 90 4.1 Catalyst Characterization 90 4.1.1 Physical Characterization 90 4.1.2 Crystallinity and Morphology 91 4.1.3 Local Coordination Environment 92 4.1.4 Electron Transfer at the Metal-Semiconductor Oxide 93 4.1.5 Oxidation State Near-Surface and Electron Transfer Near-Surface 95 4.2 Electrochemical Behavior and Performance in EGO 97 4.3 Qualitative Analysis in EGO 105 4.4 Qualitative Analysis in HER 107 4.5 Quantitative Analysis in EGO 108 4.5.1 Liquid Product Concentration 109 4.5.2 Gas Product Concentration 110 4.5.3 Ethylene Glycol Conversion 113 4.5.4 Product Selectivity 114 4.5.5 Faradaic Efficiency 119 4.5.6 Energy Consumption to Produce Glycolate 121 4.6 Quantitative Analysis in HER 122 4.6.1 Gas Product Concentration 122 4.6.2 Faradaic Efficiency 123 4.6.3 Energy Consumption to Produce H2 124 4.7 Quantitative Analysis in EGO-based H2 Generation System 125 4.7.1 Production of Glycolate and H2 in Coupled Reaction System 125 4.7.2 Estimated Production Cost to Produce Glycolate 126 4.7.3 Estimated Production Cost to Produce H2 127 4.8 Reaction Mechanism Study in EG Oxidation 127 4.8.1 Reaction Mechanism of Ethylene Glycol to Glycolate 130 4.8.2 Reaction Mechanism of Glycolate to Formate and CO2 131 Chapter 5 Conclusion and Future Outlook 134 5.1 Conclusion 134 5.2 Future Outlook 136 Reference 137 Appendix 149

    [1] M. S. Dresselhaus and I. L. Thomas, “Alternative Energy Technologies,” Nature, vol. 414, pp. 332–337, 2001.
    [2] J. Turner, G. Sverdrup, M. K. Mann, P.-C. Maness, B. Kroposki, M. Ghirardi, R. J. Evans, and D. Blake, “Renewable Hydrogen Production,” Int. J. Energy Res., vol. 32, no. 5, pp. 379–407, 2008.
    [3] P. Haussinger, R. Lohmuller, and A. M. Watson, “Hydrogen,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 1–155, 2007.
    [4] J. D. Holladay, J. Hu, D. L. King, and Y. Wang, “An Overview of Hydrogen Production Technologies,” Catal. Today, vol. 139, no. 4, pp. 244–260, 2009.
    [5] A. Konieczny, K. Mondal, T. Wiltowski, and P. Dydo, “Catalyst Development for Thermocatalytic Decomposition of Methane to Hydrogen,” Int. J. Hydrogen Energy, vol. 33, no. 1, pp. 264–272, 2008.
    [6] M. Gong, D.-Y. Wang, C.-C. Chen, B.-J. Hwang, and H. Dai, “A Mini Review on Nickel-Based Electrocatalysts for Alkaline Hydrogen Evolution Reaction,” Nano Res., vol. 9, no. 1, pp. 28–46, 2016.
    [7] K. Zeng and D. Zhang, “Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications,” Prog. Energy Combust. Sci., vol. 36, no. 3, pp. 307–326, 2010.
    [8] G. Sasikumar, A. Muthumeenal, S. S. Pethaiah, N. Nachiappan, and R. Balaji, “Aqueous Methanol Eletrolysis using Proton Conducting Membrane for Hydrogen Production,” Int. J. Hydrogen Energy, vol. 33, no. 21, pp. 5905–5910, 2008.
    [9] K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, and Z. Ogumi, “Electrocatalytic Oxidation of Ethylene Glycol in Alkaline Solution,” J. Electrochem. Soc., vol. 152, no. 4, pp. A729–A731, 2005.
    [10] E. Antolini and E. R. Gonzalez, “Alkaline Direct Alcohol Fuel Cells,” J. Power Sources, vol. 195, no. 11, pp. 3431–3450, 2010.
    [11] R. Ojani, J.-B. Raoof, and S. Fathi, “Poly(o-aminophenol) Film Prepared in the Presence of Sodium Dodecyl Sulfate : Application for Nickel Ion Dispersion and the Electrocatalytic Oxidation of Methanol and Ethylene Glycol,” Electrochim. Acta, vol. 54, pp. 2190–2196, 2009.
    [12] K. Miyazaki, T. Matsumiya, T. Abe, H. Kurata, T. Fukutsuka, K. Kojima, and Z. Ogumi, “Electrochemical Oxidation of Ethylene Glycol on Pt-based Catalysts in Alkaline Solutions and Quantitative Analysis of Intermediate Products,” Electrochim. Acta, vol. 56, no. 22, pp. 7610–7614, 2011.
    [13] L. Xin, Z. Zhang, J. Qi, D. Chadderdon, and W. Li, “Electrocatalytic Oxidation of Ethylene Glycol (EG) on Supported Pt and Au Catalysts in Alkaline Media : Reaction Pathway Investigation in Three-Electrode Cell and Fuel Cell Reactors,” Appl. Catal. B Environ., vol. 125, pp. 85–94, 2012.
    [14] O. O. Fashedemi, H. A. Miller, A. Marchionni, F. Vizza, and K. I. Ozoemena, “Electro-Oxidation of Ethylene Glycol and Glycerol at Palladium-Decorated FeCo@Fe Core-Shell Nanocatalysts for Alkaline Direct Alcohol Fuel Cells : Functionalized MWCNT Supports and Impact on Product Selectivity,” J. Mater. Chem. A, vol. 3, pp. 7145–7156, 2015.
    [15] M.-Y. Zheng, A.-Q. Wang, N. Ji, J.-F. Pang, X.-D. Wang, and T. Zhang, “Transition Metal-Tungsten Bimetallic Catalysts for the Conversion of Cellulose into Ethylene Glycol,” ChemSusChem, vol. 3, pp. 63–66, 2010.
    [16] T. Matsumoto, M. Sadakiyo, M. L. Ooi, S. Kitano, T. Yamamoto, S. Matsumura, K. Kato, T. Takeguchi, and M. Yamauchi, “CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media,” Sci. Rep., vol. 4, pp. 1–6, 2014.
    [17] K. Miltenberger, “Hydroxycarboxylic Acids, Aliphatic,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 481–492, 2012.
    [18] J. Martin, “Glycolic Acid Market Analysis,” 2013. [Online]. Available: https://issuu.com/jamesmartin19/docs/glycolic_acid_market_-_global_indus. [Accessed: 18-Jan-2021].
    [19] M. Liu, Y. Ding, M. Xian, and G. Zhao, “Metabolic Engineering of a Xylose Pathway for Biotechnological Production of Glycolate in Escherichia Coli,” Microb. Cell Fact., vol. 17, no. 51, pp. 1–11, 2018.
    [20] “Glycolic Acid Market,” MarketsandMarkets Research Private Ltd., 2019. [Online]. Available: https://www.marketsandmarkets.com/Market-Reports/glycolic-polyglycolic-acid-market-1090.html. [Accessed: 18-Jan-2021].
    [21] N. Dalbay and F. Kadirgan, “The Properties of Palladium Electrodes for Electrooxidation of Ethylene Glycol,” J. Electroanal. Chem. Interfacial Electrochem., vol. 296, no. 2, pp. 559–569, 1990.
    [22] P. K. Shen and C. Xu, “Alcohol Oxidation on Nanocrystalline Oxide Pd/C Promoted Electrocatalysts,” Electrochem. commun., vol. 8, no. 1, pp. 184–188, 2006.
    [23] E. Santos and M. C. Giordano, “Electrocatalytic oxidation of organic molecules in alkaline solutions - II. Electroadsorption and electrooxidation of ethylene glycol at platinum,” Electrochim. Acta, vol. 30, no. 7, pp. 871–878, 1985.
    [24] S. Rebsdat and D. Mayer, “Ethylene Glycol,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 531–546, 2012.
    [25] ACROS ORGANICS, “Unit Price of Ethylene Glycol,” 2021. [Online]. Available: https://www.acros.com/DesktopModules/Acros_Search_Results/Acros_Search_Results.aspx?search_type=CatalogSearch&SearchString=Ethylene glycol. [Accessed: 11-Jul-2021].
    [26] W. Riemenschneider and M. Tanifuji, “Oxalic Acid,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 529–541, 2012.
    [27] W. Reutemann and H. Kieczka, “Formic Acid,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 13–33, 2012.
    [28] ACROS ORGANICS, “Unit Price of Glycolate,” 2021. [Online]. Available: https://www.acros.com/DesktopModules/Acros_Search_Results/Acros_Search_Results.aspx?search_type=CatalogSearch&SearchString=glycolate. [Accessed: 11-Jul-2021].
    [29] A. Verma, R. Kore, D. R. Corbin, and M. B. Shiflett, “Metal Recovery Using Oxalate Chemistry – A Technical Review,” Ind. Eng. Chem. Res., vol. 58, no. 34, pp. 15381-, 2019.
    [30] ACROS ORGANICS, “Unit Price of Oxalate,” 2021. [Online]. Available: https://www.acros.com/DesktopModules/Acros_Search_Results/Acros_Search_Results.aspx?search_type=CatalogSearch&SearchString=oxalate. [Accessed: 11-Jul-2021].
    [31] A. Alissandratos, H. Kim, and C. J. Easton, “Formate Production through Biocatalysis,” Bioengineered, vol. 4, no. 5, pp. 348–350, 2013.
    [32] ACROS ORGANICS, “Unit Price of Formate,” 2021. [Online]. Available: https://www.acros.com/DesktopModules/Acros_Search_Results/Acros_Search_Results.aspx?search_type=CatalogSearch&SearchString=formate. [Accessed: 11-Jul-2021].
    [33] D. Bayer, S. Berenger, M. Joos, C. Cremers, and J. Tubke, “Electrochemical Oxidation of C2 Alcohols at Platinum Electrodes in Acidic and Alkaline Environment,” Int. J. Hydrogen Energy, vol. 35, no. 22, pp. 12660–12667, 2010.
    [34] S.-C. Chang, Y. Ho, and M. J. Weaver, “Applications of Real-Time FTIR Spectroscopy to the Elucidation of Complex Electroorganic Pathways : Electrooxidation of Ethylene Glycol on Gold , Platinum , and Nickel in Alkaline Solution,” J. Am. Chem. Soc., vol. 113, no. 25, pp. 9506–9513, 1991.
    [35] F. Kadirgan, B. Beden, and C. Lamy, “Electrocatalytic Oxidation of Ethylene-Glycol Part II. Behaviour of Platinum-ad-atom Electrodes in Alkaline Medium,” J. Electroanal. Chem., vol. 143, no. 1–2, pp. 135–152, 1983.
    [36] R. B. De Lima, V. Paganin, T. Iwasita, and W. Vielstich, “On the Electrocatalysis of Ethylene Glycol Oxidation,” Electrochim. Acta, vol. 49, no. 1, pp. 85–91, 2003.
    [37] H. Wang, Y. Zhao, Z. Jusys, and R. J. Behm, “Ethylene Glycol Electrooxidation on Carbon Supported Pt, PtRu, and Pt3Sn Catalysts - A Comparative DEMS Study,” J. Power Sources, vol. 155, no. 1, pp. 33–46, 2006.
    [38] A. O. Neto, M. Linardi, and E. V. Spinacé, “Electro-oxidation of Ethylene Glycol on PtSn/C and PtSnNi/C Electrocatalysts,” Ionics (Kiel)., vol. 12, pp. 309–313, 2006.
    [39] A. Falase, M. Main, K. Garcia, A. Serov, C. Lau, and P. Atanassov, “Electro-oxidation of Ethylene Glycol and Glycerol by Platinum-Based Binary and Ternary Nano-Structured Catalysts,” Electrochim. Acta, vol. 66, no. 1, pp. 295–301, 2012.
    [40] Y. Kim, H. Kim, and W. B. Kim, “PtAg Nanotubes for Electrooxidation of Ethylene Glycol and Glycerol in Alkaline Media,” Electrochem. commun., vol. 46, pp. 36–39, 2014.
    [41] B. Beden, I. Cetin, A. Kahyaoglu, D. Takky, and C. Lamy, “Electrocatalytic Oxidation of Saturated Oxygenated on Gold Electrodes,” J. Catal., vol. 104, no. 1, pp. 37–46, 1987.
    [42] K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, and Z. Ogumi, “Electro-oxidation of Methanol and Ethylene Glycol on Platinum in Alkaline Solution: Poisoning Effects and Product Analysis,” Electrochim. Acta, vol. 51, no. 6, pp. 1085–1090, 2005.
    [43] V. Bambagioni, M. Bevilacqua, C. Bianchini, J. Filippi, A. Marchionni, F. Vizza, L. Q. Wang, and P. K. Shen, “Ethylene Glycol Electrooxidation on Smooth and Nanostructured Pd Electrodes in Alkaline Media,” Fuel Cells, vol. 10, no. 4, pp. 582–590, 2010.
    [44] C. Xu, Z. Tian, P. K. Shen, and S. P. Jiang, “Oxide (CeO2, NiO, Co3O4, and Mn3O4) - promoted Pd/C Electrocatalysts for Alcohol Electrooxidation in Alkaline Media,” Electrochim. Acta, vol. 53, no. 5, pp. 2610–2618, 2008.
    [45] L. Wang, H. Meng, P. K. Shen, C. Bianchini, F. Vizza, and Z. Wei, “In situ FTIR Spectroelectrochemical Study on the Mechanism of Ethylene Glycol Electrocatalytic Oxidation at a Pd Electrode,” Phys. Chem. Chem. Phys., vol. 13, pp. 2667–2673, 2011.
    [46] A. Marchionni, M. Bevilacqua, C. Bianchini, Y.-X. Chen, J. Filippi, P. Fornasiero, A. Lavacchi, H. Miller, L. Wang, and F. Vizza, “Electrooxidation of Ethylene Glycol and Glycerol on Pd-(Ni-Zn)/C Anodes in Direct Alcohol Fuel Cells,” ChemSusChem, vol. 6, pp. 518–528, 2013.
    [47] Y. X. Chen, A. Lavacchi, H. A. Miller, M. Bevilacqua, J. Filippi, M. Innocenti, A. Marchionni, W. Oberhauser, L. Wang, and F. Vizza, “Nanotechnology makes more energy efficient than water electrolysis,” Nat. Commun., vol. 5, pp. 1–6, 2014.
    [48] V. Bambagioni, M. Bevilacqua, C. Bianchini, J. Filippi, A. Lavacchi, A. Marchionni, F. Vizza, and P. K. Shen, “Self‐Sustainable Production of Hydrogen, Chemicals, and Energy from Renewable Alcohols by Electrocatalysis,” ChemSusChem, vol. 3, pp. 851–855, 2010.
    [49] J. Lin, J. Ren, N. Tian, Z. Zhou, and S.-G. Sun, “In-Situ FTIR Spectroscopic Studies of Ethylene Glycol Electrooxidation on Pd Electrode in Alkaline Solution : The Effects of Concentration,” J. Electroanal. Chem., vol. 688, pp. 165–171, 2013.
    [50] C. Bianchini and P. K. Shen, “Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells,” Chem. Rev., vol. 109, no. 9, pp. 4183–4206, 2009.
    [51] L. Demarconnay, S. Brimaud, C. Coutanceau, and J. M. Leger, “Ethylene Glycol Electrooxidation in Alkaline Medium at Multi-metallic Pt Based Catalysts,” J. Electroanal. Chem., vol. 601, no. 1–2, pp. 169–180, 2007.
    [52] H. Zhang, M. Jin, Y. Xiong, B. Lim, and Y. Xia, “Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications,” Acc. Chem. Res., vol. 46, no. 8, pp. 1783–1794, 2013.
    [53] L. Jiqiao and H. Baiyun, “Particle size characterization of ultrafine tungsten powder,” Int. J. Refract. Metals Hard Mater., vol. 19, pp. 89–99, 2001.
    [54] V. T. T. Ho, C.-J. Pan, J. Rick, W.-N. Su, and B.-J. Hwang, “Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction,” J. Am. Chem. Soc., vol. 133, pp. 11716–11724, 2011.
    [55] M.-C. Tsai, T.-T. Nguyen, N. G. Akalework, C.-J. Pan, J. Rick, Y.-F. Liao, W.-N. Su, and B. J. Hwang, “Interplay between Molybdenum Dopant and Oxygen Vacancies in a TiO2 Support Enhances the Oxygen Reduction Reaction,” ACS Catal., vol. 6, pp. 6551–6559, 2016.
    [56] J. Brelle, A. Blatter, and R. Ziegenhagen, “Precious Palladium-Aluminium-Based Alloys with High Hardness and Workability,” Platin. Met. Rev., vol. 53, no. 4, p. 189, 2009.
    [57] R. Pattabiraman, “Electrochemical Investigations on Carbon Supported Palladium Catalysts,” Appl. Catal. A Gen., vol. 153, no. 1–2, pp. 9–20, 1997.
    [58] H. Renner, G. Schlamp, I. Kleinweachter, E. Drost, H. M. Leuschow, P. Tews, P. Panster, M. Diehl, J. Lang, T. Kreuzer, A. Knodler, K. A. Strarz, K. Dermann, J. Rothaut, R. Drieselmann, C. Peter, and R. Schiele, “Platinum Group Metals and Compounds,” in Ullmann’s Encyclopedia of Industrial Chemistry, 28th ed., Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 317–388, 2012.
    [59] U.S. Geological Survey, Mineral Commodity Summaries 2021. National Minerals Information Center, 2021.
    [60] A. E. Yarulin, R. M. C. Quesada, E. V. Egorova, and L. L. K. Minsker, “Structure Sensitivity of Selective Acetylene Hydrogenation over the Catalysts with Shape-Controlled Palladium Nanoparticles,” Kinet. i Katal., vol. 53, no. 2, pp. 263–271, 2012.
    [61] M. Jin, H. Zhang, Z. Xie, and Y. Xia, “Palladium Nanocrystals Enclosed by (100) and (111) Facets in Controlled Proportions and Their Catalytic Activities,” Energy Environ. Sci., vol. 5, pp. 6352–6357, 2012.
    [62] I. Efremenko, “Implication of Palladium Geometric and Electronic Structures to Hydrogen Activation on Bulk Surfaces and Clusters,” J. Mol. Catal. A Chem., vol. 173, no. 1–2, pp. 19–59, 2001.
    [63] Y. Yu, Y. Zhao, T. Huang, and H. Liu, “Shape-controlled Synthesis of Palladium Nanocrystals by Microwave Irradiation,” Pure Appl. Chem., vol. 81, no. 12, pp. 2377–2385, 2009.
    [64] T. Teranishi and M. Miyake, “Size Control of Palladium Nanoparticles and Their Crystal Structures,” Chem. Mater., vol. 10, no. 2, pp. 594–600, 1998.
    [65] Y. Xiong and Y. Xia, “Shape-Controlled Synthesis of Metal Nanostructures: The Case of Palladium,” Adv. Mater., vol. 19, pp. 3385–3391, 2007.
    [66] A. Rochefort, J. Andzelm, N. Russo, and D. R. Salahub, “Chemisorption and Diffusion of Atomic Hydrogen in and on Cluster Models of Pd, Rh, and Bimetallic PdSn, RhSn, and RhZn Catalysts,” J. Am. Chem. Soc., vol. 112, no. 23, pp. 8239–8247, 1990.
    [67] S. Speller, T. Rauch, A. Postnikov, and W. Heiland, “Scanning Tunneling Microscopy and Spectroscopy of CO-likes on Pd (111),” Phys. Rev. B, vol. 61, no. 11, pp. 7297–7300, 2000.
    [68] W. Tu and H. Liu, “Rapid Synthesis of Nanoscale Colloidal Metal Clusters by Microwave Irradiation,” J. Mater. Chem., vol. 10, pp. 2207–2211, 2000.
    [69] Z. Q. Tian, F. Y. Xie, and P. K. Shen, “Preparation of High Loading Pt Supported on Carbon by On-Site Reduction Method,” J. Mater. Sci., vol. 39, no. 4, pp. 1507–1509, 2004.
    [70] C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, and T. D. Jarvi, “A Reverse-Current Decay Mechanism for Fuel Cells,” Electrochem. Solid-State Lett., vol. 8, no. 6, pp. A273–A276, 2005.
    [71] K. H. Kangasniemi, D. A. Condit, and T. D. Jarvi, “Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions,” J. Electrochem. Soc., vol. 151, no. 4, pp. E125–E132, 2004.
    [72] C. T. Campbell and J. Sauer, “Introduction: Surface Chemistry of Oxides,” Chem. Rev., vol. 113, pp. 3859–3862, 2013.
    [73] K. An and G. A. Somorjai, “Nanocatalysis I : Synthesis of Metal and Bimetallic Nanoparticles and Porous Oxides and Their Catalytic Reaction Studies,” Catal. Lett., vol. 145, pp. 233–248, 2015.
    [74] Y.-X. Chen, A. Lavacchi, S.-P. Chen, F. D. Benedetto, M. Bevilacqua, C. Bianchini, P. Fornasiero, M. Innocenti, M. Marelli, W. Oberhauser, S.-G. Sun, and F. Vizza, “Electrochemical Milling and Faceting : Size Reduction and Catalytic Activation of Palladium on TiO2 Nanoparticles,” Angew. Chem., vol. 124, pp. 8628–8632, 2012.
    [75] V. I. Lakshamanan, A. Bhowmick, and M. A. Halim, “Chapter 5 : Titanium Dioxide : Production, Properties, and Applications,” in Titanium Dioxide : Chemical Properties, Applications, and Environmental Effects, no. May, J. Brown, Ed. New York: Nova Publishers, pp. 75–130, 2014.
    [76] M. H. Samat, A. M. M. Ali, M. F. M. Taib, O. H. Hassan, and M. Z. A. Yahya, “Hubbard U Calculations on Optical Properties of 3d Transition Metal Oxide TiO2,” Results Phys., vol. 6, pp. 891–896, 2016.
    [77] Y. Hwu, Y. D. Yao, N. F. Cheng, C. Y. Tung, and H. M. Lin, “X-ray Absorption of Nanocrystal TiO2,” NanoStructured Mater., vol. 9, no. 97, pp. 355–358, 1997.
    [78] H. Zhang and J. F. Banfield, “Thermodynamic Analysis of Phase Stability of Nanocrystalline Titania,” J. Mater. Chem., vol. 8, no. 6, pp. 2073–2076, 1998.
    [79] J.-Y. Park, C. Lee, K.-W. Jung, and D. Jung, “Structure Related Photocatalytic Properties of TiO2,” Bull. Korean Chem. Soc., vol. 30, no. 2, pp. 402–404, 2009.
    [80] J. E. S. Haggerty, L. T. Schelhas, D. A. Kitchaev, J. S. Mangum, L. M. Garten, W. Sun, K. H. Stone, J. D. Perkins, M. F. Toney, G. Ceder, D. S. Ginley, B. P. Gorman, and J. Tate, “High-Fraction Brookite Films From Amorphous Precursors,” Sci. Rep., vol. 7, no. August, pp. 1–11, 2017.
    [81] S. Yang and L. E. Halliburton, “Fluorine Donors and Ti3+ Ions in TiO2 Crystals,” Phys. Rev. B, vol. 81, no. January, pp. 1–7, 2010.
    [82] K. Thamaphat, P. Limsuwan, and B. Ngotawornchai, “Phase Characterization of TiO2 Powder by XRD and TEM,” Nat. Sci., vol. 42, pp. 357–361, 2008.
    [83] I. R. Ocana, A. Beltram, J. J. D. Jaén, G. Adami, T. Montini, and P. Fornasiero, “Photocatalytic H2 production by ethanol photodehydrogenation: Effect of anatase/brookite nanocomposites composition,” Inorganica Chim. Acta, pp. 1–9, 2015.
    [84] A. T. Paxton and L. Thien-Nga, “Electronic Structure of Reduced Titanium Dioxide,” Phys. Rev. B, vol. 57, no. 3, pp. 1579–1584, 1998.
    [85] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., vol. 95, no. 1, pp. 69–96, 1995.
    [86] A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide catalyst,” Photochem. Rev., vol. 1, no. March, pp. 1–21, 2000.
    [87] C. A. C. López, S. E. R. Gómez, A. C. Hurtado, and S. A. G. Duarte, “Effect of the synthesis variables of TiO2 on the photocatalytic activity towards the degradation of water pollutants,” Rev. Fac. Ing. Univ. Antioquia N., vol. 57, pp. 49–56, 2011.
    [88] K. Chalastara, F. Guo, S. Elouatik, and G. P. Demopoulos, “Tunable Composition Aqueous-Synthesized Mixed-Phase TiO2 Nanocrystals: Comparison of Anatase, Brookite and Rutile,” Catalysts, vol. 10, no. 4, p. 407, 2020.
    [89] M. Li, L. Gu, T. Li, S. Hao, F. Tan, D. Chen, D. Zhu, Y. Xu, C. Sun, and Z. Yang, “TiO2-Seeded Hydrothermal Growth of TiO2 Nanocrystals,” Crystals, vol. 10, no. 202, pp. 1–15, 2020.
    [90] X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials : Synthesis, Properties, Modifications, and Applications,” Chem. Rev., vol. 107, pp. 2891–2959, 2007.
    [91] G. Pacchioni, “Electronic Interactions and Charge Transfers of Metal Atoms and Clusters on Oxide Surfaces,” Phys. Chem. Chem. Phys., vol. 15, pp. 1737–1757, 2013.
    [92] M. J. J. Jak, C. Konstapel, A. van Kreuningen, J. Verhoeven, and J. W. M. Frenken, “Scanning Tunnelling Microscopy Study of the Growth of Small Palladium Particles on TiO2 (110),” Surf. Sci., vol. 457, no. 3, pp. 295–310, 2000.
    [93] B. L. Mojet, J. T. Miller, D. E. Ramaker, and D. C. Koningsberger, “A New Model Describing the Metal-Support Interaction in Noble Metal Catalysts,” J. Catal., vol. 186, no. 2, pp. 373–386, 1999.
    [94] T. Bredow and G. Pacchioni, “A Quantum-Chemical Study of Pd Atoms Supported on TiO2 (110),” Surf. Sci., vol. 426, no. 1, pp. 106–122, 1999.
    [95] I. G. Kokh, L. V. Babenkova, and N. M. Popova, “Reactivity of Chemisorbed Hydrogen Species on Pd Towards Acetylene,” React. Kinet. Catal. Lett., vol. 34, no. 2, pp. 243–248, 1987.
    [96] B. C. Khanra and M. Menon, “Role of Adsorption on Surface Composition of Pd/TiO2 Nanoparticles,” Phys. B, vol. 270, no. 3–4, pp. 307–312, 1999.
    [97] M.-F. Luo and X.-M. Zheng, “Redox Behaviour and Catalytic Properties of TiO2-supported Palladium Catalysts,” Appl. Catal. A Gen., vol. 189, no. 1, pp. 15–21, 1999.
    [98] V. P. Zhdanov and B. Kasemo, “Simulations of the Reaction Kinetics on Nanometer Supported Catalyst Particles,” Surf. Sci. Rep., vol. 39, no. 2–4, pp. 25–104, 2000.
    [99] M. Watanabe and S. Motoo, “Enhancement of the Oxidation of Methanol on Platinum and Palladium By Gold Ad-Atoms,” J. Electroanal. Chem. Interfacial Electrochem., vol. 60, no. 3, pp. 259–266, 1975.
    [100] Thermo Nicolet Corporation, “Introduction to Fourier Transform Infrared Spectrometry,” Wisconsin, 2001.
    [101] T. L. James, “Chapter 1 Fundamentals of NMR,” California: Department of Pharmaceutical Chemistry, University of California, pp. 1–31, 1998.
    [102] D. Turner, “Gas Chromatography,” Analysis & Separations from Technology Networks, 2021. [Online]. Available: https://www.technologynetworks.com/analysis/articles/gas-chromatography-how-a-gas-chromatography-machine-works-how-to-read-a-chromatograph-and-gcxgc-335168. [Accessed: 20-May-2021].
    [103] M. Yoshimura and K. Byrappa, “Hydrothermal Processing of Materials: Past, Present and Future,” J. Mater. Sci., vol. 43, pp. 2085–2103, 2008.
    [104] M. Carmo, A. R. dos Santos, J. G. R. Poco, and M. Linardi, “Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications,” J. Power Sources, vol. 173, pp. 860–866, 2007.
    [105] F. J. S. Trujillo, “Investigation of the Catalytic Performance of Palladium-Based Catalysts for Hydrogen Production from Formic Acid Decomposition,” Cardiff University, 2018.
    [106] C.-J. Pan, M.-C. Tsai, W.-N. Su, J. Rick, N. G. Akalework, A. K. Agegnehu, S.-Y. Cheng, and B. J. Hwang, “Tuning/exploiting Strong Metal-Support Interaction (SMSI) in Heterogeneous Catalysis,” J. Taiwan Inst. Chem. Eng., vol. 74, pp. 154–186, 2017.
    [107] T. Yokoyama, K. Asakura, Y. Iwasawa, and H. Kuroda, “Temperature Dependence of Extended X-ray Absorption Fine Structure Spectra of Rh and Pd Catalysts in the Strong Metal-Support Interaction State,” J. Phys. Chem., vol. 93, no. 26, pp. 8323–8327, 1989.
    [108] P. Reyes, M. C. Aguirre, I. Melian-Cabrera, M. L. Granados, and J. L. G. Fierro, “Interfacial Properties of an Pd/TiO2 System and Their Relevance in Crotonaldehyde Hydrogenation,” J. Catal., vol. 208, pp. 229–237, 2002.
    [109] C. Lu, C. Rice, R. I. Masel, P. K. Babu, P. Waszczuk, H. S. Kim, E. Oldfield, and A. Wieckowski, “UHV, Electrochemical NMR, and Electrochemical Studies of Platinum/Ruthenium Fuel Cell Catalysts,” J. Phys. Chem. B, vol. 106, pp. 9581–9589, 2002.
    [110] B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation,” Langmuir, vol. 17, no. 9, pp. 2664–2669, 2001.
    [111] C. Wei, S. Sun, D. Mandler, X. Wang, S. Z. Qiao, and Z. J. Xu, “Approaches for Measuring the Surface Areas of Metal Oxide Electrocatalysts for Determining Their Intrinsic Electrocatalytic Activity,” Chem. Soc. Rev., vol. 48, pp. 2518–2534, 2019.
    [112] J. Durst, A. Siebel, C. Simon, F. Hasche, J. Herranz, and H. A. Gasteiger, “New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism,” Energy Environ. Sci., vol. 7, no. 2, pp. 2255–2260, 2014.
    [113] R. Liang, A. Hu, J. Persic, and Y. N. Zhou, “Palladium Nanoparticles Loaded on Carbon Modified TiO2 Nanobelts for Enhanced Methanol Electrooxidation,” Nano-Micro Lett., vol. 5, no. 3, pp. 202–212, 2013.
    [114] Z.-Z. Yang, L. Liu, A.-J. Wang, J. Yuan, J.-J. Feng, and Q.-Q. Xu, “Simple wet-chemical strategy for large-scaled synthesis of snowflake-like PdAu alloy nanostructures as effective electrocatalysts of ethanol and ethylene glycol oxidation,” Int. J. Hydrogen Energy, vol. 42, no. 4, pp. 2034–2044, 2017.
    [115] D. Tu, B. Wu, B. Wang, C. Deng, and Y. Gao, “A highly Active Carbon-Supported PdSn Catalyst for Formic Acid Electrooxidation,” Appl. Catal. B Environ., vol. 103, no. 1–2, pp. 163–168, 2011.
    [116] Y. Jiang, Y. Lu, F. Li, T. Wu, L. Niu, and W. Chen, “Facile Electrochemical Codeposition of ‘Clean’ Graphene-Pd Nanocomposite as an Anode Catalyst for Formic Acid Electrooxidation,” Electrochem. commun., vol. 19, pp. 21–24, 2012.
    [117] X. Fang, L. Wang, P. K. Shen, G. Cui, and C. Bianchini, “An in situ Fourier transform infrared spectroelectrochemical study on ethylene glycol electrooxidation on Pd in alkaline solution,” J. Power Sources, vol. 195, no. 5, pp. 1375–1378, 2010.
    [118] A. Bahuguna and Y. Sasson, “Formate Bicarbonate Cycle as a Vehicle for Hydrogen and Energy Storage,” ChemSusChem, vol. 14, no. 5, pp. 1258–1283, 2021.
    [119] M. Liu, Y. Ding, M. Xian, and G. Zhao, “Metabolic Engineering of a Xylose Pathway for Biotechnological Production of Glycolate in Escherichia Coli,” Microb. Cell Fact., vol. 17, no. 51, pp. 1–11, 2018.
    [120] Research and Markets, “Insights on the Oxalate Global Market (2020 to 2027) - by Application, End-use Industry and Form,” Intrado GlobeNewswire, 2020. [Online]. Available: https://www.globenewswire.com/news-release/2020/11/04/2120012/0/en/Insights-on-the-Diethyl-Oxalate-Global-Market-2020-to-2027-by-Application-End-use-Industry-and-Form.html. [Accessed: 16-May-2021].
    [121] Verified Market Research, “Global Formate Market Size By Application, By Geographic Scope And Forecast,” Verified Market Research, 2021. [Online]. Available: https://www.verifiedmarketresearch.com/product/sodium-formate-market/. [Accessed: 16-May-2021].
    [122] United States Patents 5,965,889 & 6,128,075, P. R. Brierley, PIKE Technologies, 1999, 2000.
    [123] A. M. Jasim, S. E. Hoff, Y. Xing, “Enhancing methanol electrooxidation activity using double oxide catalyst support of tin oxide clusters on doped titanium dioxides,” Electrochim. Acta, vol. 261, pp. 221–226, 2018.

    無法下載圖示 全文公開日期 2026/08/06 (校內網路)
    全文公開日期 2026/08/06 (校外網路)
    全文公開日期 2026/08/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE