簡易檢索 / 詳目顯示

研究生: 蕭宇呈
Yu-Cheng Hsiao
論文名稱: 碳改質二氧化鈦薄膜及其可見光催化活性之研究
Study on Carbon-modified Titania Film and its Visible-light-responsively Photocatalytic Activity
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 吳紀聖
Chi-Sheng Wu
胡啟章
Chi-Chang Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 137
中文關鍵詞: 可見光應答碳改質光觸媒薄膜浸鍍法
外文關鍵詞: visible-light-respnsive, carbon-modified, titania film, dip-coating
相關次數: 點閱:249下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用浸鍍法(Dip-coating method)製備含碳之二氧化鈦光觸媒薄膜,期望以簡易的方式製備出具有可見光應答性的光觸媒材料。藉由調整製備的參數,找出最適當的葡萄糖摻雜量與碳化溫度。

    實驗中主要以製備含碳源之光觸媒溶膠與浸鍍法製備光觸媒薄膜為研究重點,以控制加熱氣氛與溫度之方式製備光觸媒薄膜,進一步進行光觸媒試片的物理性質及光催化活性測試,以找出光觸媒薄膜之物理特性與活性間的關聯性。物理特性分析以X光繞射(XRD)、掃瞄式電子顯微鏡(SEM)、紫外光-可見光譜儀(UV-Vis spectrometry)、光激發螢光光譜儀(PL)、X射線光電子能譜儀(XPS)、拉曼光譜儀(Raman spectrum)、傅立葉紅外線光譜儀(FTIR)、電化學分析儀(Electrochemical analyzer)與接觸角量測儀(CAM)等儀器對光觸媒試片作分析,以觀察不同的葡萄糖含量與碳化溫度對於表面結構、組成與表面官能基之影響,並探討碳含量對於光線吸收特性、電子與電洞的分離能力與電化學特性對反應活性的影響。光催化活性則分為以氣相與液相反應作討論。液相之光催化反應係以光催化觸媒降解亞甲基藍水溶液作為探討,觀察於可見光與紫外光的照射下,光觸媒對亞甲基藍之脫色能力。氣相則是探討光觸媒薄膜在可見光與紫外光激發下,對無機性氮氧化物氣體的去除能力。

    實驗結果顯示摻入適量(50-100 wt%)的葡萄糖改質二氧化鈦與適當的碳化溫度(300oC-350oC)時,在紫外光和可見光照射下其光觸媒薄膜之光催化活性效果最佳。由物理特性分析結果可知碳的摻入,光觸媒薄膜的可見光吸收增加並有效將二氧化鈦能隙縮小。此外,表面的碳具有增加電子與電洞分離的能力,可有效的提升光觸媒薄膜的光催化能力。但若表面上的碳含量過高時會覆蓋住二氧化鈦表面的活性位置,亦會造成活性下降。因此,適當的碳含量與其組成為重要的關鍵。


    In this study, the carbon-modified titania (C-TiO2) film was easily prepared by impregnation method with using a glucose-containng TiO2 sol. C-TiO2 films were prepared at the controlled calcination conditions, exhibit highly photocatalytic activity for the degradation of gaseous NOx and decolorization of aqueous methylene blue under visible-light illumination. The effects of carbon content、temperature of carbonation and related structure on photoactivity and physical property were investigated in detail for the optimal amount of glucose.

    In the experiment, the physical properties and photocatalytic activities of C-TiO2 films were investigated to clarify the reaction mechanism. Physical properties of the film were determined by X-ray diffractometer (XRD), scanning electron microscope (SEM), ultraviolet-visible spectrometry (UV-Vis Spectrometry), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, raman spectroscopy, infrared spectrometer (IR), electrochemical analyzer and contact angle meter (CAM), respectively. These results indicated the differences among the films in the surface structure, composition, functional groups, light absorption range, recombination rate of e−/h+ pairs, and photoelectrochemical behavior.

    The results show that the suitable addition amount of glucose is 50-100 % and the suitable temperature of carbonation is 300oC-350oC for good photocatalytic activity under ultraviolet and visible- light irradiations. The carbonaceous species on the TiO2 surface enhances the visible-light absorption of TiO2 films, resulting in the decrease in band gap. In addition, the introduction of carbonaceous species can also reduce the efficiency of electrons–hole pair, so the C-TiO2 film has a better photocatalytic ability than pure TiO2 film. However, the excessive amount of carbon lessens photocatalytic ability due to the serious coverage effect on active sites on the TiO2 surface. Therefore, the amount and structure of carbonaceous species on the TiO2 surface play important roles in the visible-light absorption and photocatalytic degradation rates for NOx and dye.

    摘要..........................................................................I Abstract.....................................................................II 致謝.........................................................................IV 目錄..........................................................................V 圖目錄......................................................................VII 表目錄.......................................................................XI 第一章 前言...................................................................1 1.1 光催化原理.............................................................1 1.2 二氧化鈦簡介...........................................................2 1.3 二氧化鈦薄膜簡介.......................................................4 1.4 氮氧化物(NOX)光催化降解反應..........................................6 第二章 文獻回顧...............................................................7 2.1 碳改質二氧化鈦光觸媒薄膜之製備與文獻探討分析...........................7 2.2 碳改質二氧化鈦光觸媒粒子之製備與文獻探討分析..........................32 2.3 研究目的..............................................................43 第三章 研究方法..............................................................44 3.1實驗規劃...............................................................44 3.2藥品...................................................................45 3.3儀器設備...............................................................45 3.4樣品製備...............................................................49 3.5光催化反應測試.........................................................49 3.5.1 亞甲基藍脫色實驗................................................50 3.5.2 氮氧化物光催化降解實驗..........................................50 第四章 結果與討論............................................................52 4.1葡萄糖摻入含量之影響...................................................52 4.1.1 光催化降解亞甲基藍脫色實驗......................................52 4.1.2 光催化降解氮氧化物實驗..........................................56 4.1.3 X光繞射分析.....................................................61 4.1.4 高解析度場發射掃描式電子顯微鏡..................................63 4.1.5 紫外-可見光吸收光譜.............................................67 4.1.6 X光線光電子能譜儀...............................................70 4.1.7 光激發螢光......................................................73 4.1.8 傅立葉穿透式紅外線光譜儀........................................75 4.1.9 拉曼光譜分析....................................................77 4.1.10 光電化學分析....................................................79 4.1.11 接觸角分析......................................................83 4.1.12 碳結構探討......................................................84 4.2 不同碳化溫度之影響....................................................86 4.2.1 光催化降解亞甲基藍脫色實驗......................................86 4.2.2 光催化降解氮氧化物實驗..........................................88 4.2.3 X光繞射分析.....................................................92 4.2.4 高解析度場發射掃描式電子顯微鏡..................................94 4.2.5 紫外-可見光光譜儀...............................................97 4.2.6 X光線光電子能譜儀...............................................99 4.2.7 光激發螢光.....................................................101 4.2.8 傅立葉穿透式紅外線光譜儀.......................................104 4.2.9 拉曼光譜分析...................................................106 4.2.10 光電流分析.....................................................108 4.2.11 接觸角分析.....................................................110 4.3 不同光源之光催化反應.................................................111 4.4 二氧化鈦薄膜與P25之比較..............................................113 4.5 氮氣條件之選擇.......................................................114 第五章 結論與未來展望.......................................................115 5.1 葡萄糖改質二氧化鈦薄膜...............................................115 5.2 不同碳化溫度之影響...................................................116 5.3 未來展望.............................................................116 第六章 參考文獻.............................................................118

    [1] 藤嶋昭,橋本和仁,渡部俊也,吳紀聖,圖解光觸媒,世茂出版有限公司,第10頁(2006)

    [2] 陳富亮,最新奈米光觸媒應用技術,普林斯頓國際有限公司出版,(2003)

    [3] Linsebigler, A.L., Lu, G., Yates Jr., J.T. , “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chemical Reviews 95, pp. 735-758(1995).

    [4] Payne, H.F., “The dip coater: An instrument for making uniform films by the dip method”, Industrial and Engineering Chemistry 15, pp. 48-56(1943).

    [5] Tseng Y.H., Kuo C.S., Huang C.H., et al. ,“Visible-lightresponsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity”,Nanotechnology 17, pp. 2490–2497(2006).

    [6] Hsiao, Y. C., Tseng, Y. H., “Preparation of Pd-containing TiO2 film and its photocatalytic properties”, Micro & Nano Letters 5, pp. 317–320(2010).

    [7] Akhavan, O., Azimirad, R., Safa, S., Larijani, M.M., “Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents”, Journal of Materials Chemistry 20, pp. 7386-7392(2010).

    [8] Sampaio, M.J., Silva, C.G., Marques, R.R.N., Silva, A.M.T., Faria, J.L., “Carbon nanotube–TiO2 thin films for photocatalytic applications”, Catalysis Today 161, pp. 91-96(2011).

    [9] Xu, C., Killmeyer, R., Gray, M.L., Khan, S.U.M., “Enhanced carbon doping of n-TiO2 thin films for photoelectrochemical water splitting”, Electrochemistry Communications 8, pp. 1650-1654(2006).

    [10] Yang, J., Bai, H., Jiang, Q., Lian, J., “Visible-light photocatalysis in nitrogen-carbon-doped TiO2 films obtained by heating TiO2 gel–film in an ionized N2 gas”, Thin Solid Films 516, pp. 1736-1742(2008).

    [11] Yang, J., Bai, H., Tan, X., Lian, J., “IR and XPS investigation of visible-light photocatalysis-Nitrogen-Carbon-doped TiO2 film”, Applied Surface Science 253 , pp. 1988-1994(2004).

    [12] Irie, H., Washizuka, S., Hashimoto, K., “Hydrophilicity on carbon-doped TiO2 thin films under visible light”, Thin Solid Films 510, pp. 21-25(2006).

    [13] Hsu, S. W., Yang, T. S., Chen, T. K., Wong, M. S., “Ion-assisted electron-beam evaporation of carbon-doped titanium oxide films as visible-light photocatalyst”, Thin Solid Films 515 , pp. 3521–3526(2007).

    [14] Wong, M. S., Hsu, S. W., Rao, K.K., Kumar, C.P., “Influence of crystallinity and carbon content on visible light photocatalysis of carbon doped titania thin films”, Journal of Molecular Catalysis A: Chemical 279 , pp. 20–26(2008).

    [15] Sellappan, R., Zhu, J., Fredriksson, H., Martins, R.S., Zäch, M., Chakarov, D. , “Preparation and characterization of TiO¬2/carbon composite thin films with enhanced photocatalytic activity”, Journal of Molecular Catalysis A: Chemical 335, pp. 136-144(2011).

    [16] Mai, L., Huang, C., Wang, D., Zhang, Z., Wang, Y., “Effect of C doping on the structural and optical properties of sol–gel TiO2 thin films”, Applied Surface Science 255, pp. 9285-9289(2009).

    [17] Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W., Maier, W.F., “Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst”, Applied Catalysis B: Environmental 32, pp. 215-227(2001).

    [18] Karvinen, S., “The effects of trace elements on the crystal properties of TiO2”, Solid State Sciences 5, pp. 811-819(2003).

    [19] Jiang, G., Lin, Z., Zhu, L., Ding, Y., Tang, H.,“Preparation and photoelectrocatalytic properties of titania/carbon nanotube composite films”, carbon 48, pp. 3369–3375(2010).

    [20] Jiang, D., Zhang, S., Zhao, H., “ Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases”, Environmental Science and Technology 41, pp. 303-308(2007).

    [21] Yan, M., Chen, F., Zhang, J., Anpo, M., “ Preparation of controllable crystalline titania and study on the photocatalytic properties”, Journal of Physical Chemistry B 109, pp. 8673-8678(2005).

    [22] Jia, F., Yao, Z., Jiang, Z., Li, C., “Preparation of carbon coated TiO2 nanotubes film and its catalytic application for H2 generation”, Catalysis Communications 12, pp. 497-501(2011).

    [23] Wang, H., Quan, X., Yu, H., Chen, S., “Fabrication of a TiO2/carbon nanowall heterojunction and its photocatalytic ability”, Carbon 46, pp. 1126-1132(2008).

    [24] Zare-Hossein-abadi, D., Ershad-Langroudi, A., Rahimi, A., Afsar, S. , “ Photo-Generated Activities of Nanocrystalline TiO2 Thin Films, “Journal of Inorganic and Organometallic Polymers and Materials 20, pp. 250-257(2010).

    [25] Negishi, N., Takeuchi, K., Ibusuki, T., “Surface structure of the TiO2 thin film photocatalyst”, Journal of Materials Science 33, pp. 5789-5794(1998).

    [26] Yu, G., Chen, Z., Zhang, Z., Zhang, P., Jiang, Z., “The photocatalytic activity and stability of a nanosized TiO2 film prepared by carbon black modified method”, Catalysis Today 90, pp. 305-312(2004).

    [27] Ao, Y., Xu, J., Fu, D., Shen, X., Yuan, C., “Low temperature preparation of anatase TiO2-activated carbon composite film”, Applied Surface Science 254, pp. 4001-4006(2008).

    [28] Xu, C., Killmeyer, R., Gray, M.L., Khan, S.U.M., “Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination”, Applied Catalysis B: Environmental 64, pp. 312-317(2006).

    [29] Zhong, J., Chen, F., Zhang, J., “Carbon-Deposited TiO2: Synthesis, Characterization, and Visible Photocatalytic Performance”, Journal of Physical Chemistry C 114, pp. 933-939(2010).

    [30] Wang, Y., Zhong, M., Chen, F., Yang, J., “Visible light photocatalytic activity of TiO2/D-PVA for MO degradation”, Applied Catalysis B: Environmental 90, pp. 249-254(2009).

    [31] Tryba, B., Tsumura, T., Janus, M., Morawski, A.W., Inagaki, M., “Carbon-coated anatase: adsorption and decomposition of phenol in water”, Applied Catalysis B: Environmental 50, pp. 177-183(2004).

    [32] Inagaki, M., Kojin, F., Tryba, B., Toyoda, M., “Carbon-coated anatase: the role of the carbon layer for photocatalytic performance”, Carbon 43, pp. 1652-1659(2005).

    [33] Yang, X., Cao, C., Erickson, L., Hohn, K., Maghirang, R., Klabunde, K., “Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping”, Journal of Catalysis 260, pp. 128-133(2008).

    [34] Shi, J., Zheng, J., Wu, P., Ji, X., “Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size”, Catalysis Communications 9, pp. 1846-1850(2008).

    [35] Kasaoka, S., Sakata, Y., Tanaka, E., Naitoh, R., “Design of molecular-sieve carbon. Studies on the adsorption of various dyes in the liquid phase”, International chemical engineering 29, pp. 734-742(1989).

    [36] Lin, H., Huang, C.P., Li, W., Ni, C., Shah, S.I., Tseng, Y.H., “Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol”, Applied Catalysis B: Environmental 68, pp. 1-11(2006).

    [37] Zang, L., Macyk, W., Lange, C., Maier, W.F., Antonius, C., Meissner, D., Kisch, H., “Visible-light detoxification and charge generation by transition metal chloride modified titania”, Chemistry - A European Journal 6, pp. 379-384(2000).

    [38] Li, Y., Hwang, D. S., Lee, N.H., Kim, S. J. , “Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst”, Chemical Physics Letters 404, pp. 25-29(2005).

    [39] Yu, C., Yu, J.C. , “A simple way to prepare C-N-codoped TiO2 photocatalyst with visible-light activity” , Catalysis Letters 129, pp. 462-470(2009).

    [40] Di Paola, A., Bellardita, M., Marcì, G., Palmisano, L., Parrino, F., Amadelli, R. , “Preparation of Sm-loaded brookite TiO2 photocatalysts” , Catalysis Today 161, pp. 35–40(2011).

    [41] Huang, Y., Ho, W., Lee, S., Zhang, L., Li, G., Yu, J.C. , “Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOX” , Langmuir 24, pp. 3510-3516(2008).

    [42] Kozlov, D.V., Paukshtis, E.A., Savinov, E.N. , “The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the FTIR in situ method” , Applied Catalysis B: Environmental 24, pp. L7-L12(2000)

    [43] Lin, X., Rong, F., Ji, X., Fu, D., “Carbon-doped mesoporous TiO2 film and its photocatalytic activity”, Microporous and Mesoporous Materials 142, pp. 276–281(2011).

    [44] Chen, C., Cai, W., Long, M., Zhou, B., Wu, Y., Wu, D., Feng, Y. , “Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction”, ACS Nano 4, pp. 6425-6432(2010).

    [45] Za̧bek, P., Eberl, J., Kisch, H.,“On the origin of visible light activity in carbon-modified titania”, Photochemical and Photobiological Sciences 8, pp. 264-269(2009).

    [46] 郭建宏,碳改質二氧化鈦及其可見光應答催化活性之研究,國立台灣科技大學化學工程學系碩士學位論文(2010)

    [47] Rincón, M.E., Trujillo-Camacho, M.E., Cuentas-Gallegos, A.K., “Sol-gel titanium oxides sensitized by nanometric carbon blacks: Comparison with the optoelectronic and photocatalytic properties of physical mixtures”, Catalysis Today 107-108, pp. 606-611(2005).

    [48] Takeuchi, M., Sakamoto, K., Martra, G., Coluccia, S., Anpo, M. , “Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface”, Journal of Physical Chemistry B 109, pp. 15422-15428(2005).

    無法下載圖示 全文公開日期 2016/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE