簡易檢索 / 詳目顯示

研究生: 楊雅婷
Ya-Ting Yang
論文名稱: 以3D列印技術結合覆膜製程開發生物可降解動靜脈廔管支架
Combining 3D Printing Technology and Dip Coating Process to Develop Biodegradable Arteriovenous Fistula Stent
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 陳品銓
Pin-Chuan Chen
何羽健
Yu-Chien Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 138
中文關鍵詞: 動靜脈廔管生物可降解支架聚己內酯3D列印浸塗製程
外文關鍵詞: arteriovenous fistula, biodegradable stent, polycaprolactone, 3d printing, dip coating process
相關次數: 點閱:503下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 患者在進行血液透析前須先建立血液透析管路,其中以透過手術將自身動脈與靜脈進行吻合的自體動靜脈廔管(Arteriovenous Fistula, AVF)方式最為常用。目前市售之動靜脈廔管支架皆為金屬支架,雖然金屬支架置入得以解決廔管急性阻塞的問題,但容易造成後續血栓形成及血管再狹窄的情況發生,如嚴重時常需要進行二次手術。
    有鑑於此,本研究以3D列印製作聚乙烯醇(Polyvinyl Alcohol, PVA)快速降解支架,利用覆膜製程(Dip Coating Process)方式將聚己內酯(Polycaprolactone, PCL)溶液浸塗在PVA支架上,並經水解後製作出具生物可降解特性的PCL薄膜型支架模具,再將由PCL多元醇改質之光固化材料PCL-TA(Polycaprolactone-triacrylate)充填至支架模具中,完成動靜脈廔管充填式薄膜型支架,藉由開發生物可降解動靜脈廔管支架,解決目前金屬支架置入後續遇到的問題,避免二次手術的發生。
    本研究參考Mirage支架之設計概念,利用調控列印路徑及列印參數進行3D列印支架之製作,並將支架浸泡於去離子水中進行支架後處理,成功製作出具有良好表面品質之PVA快速降解支架。透過將所製作之PVA支架結合覆膜製程,藉由調控溶液濃度、抽取時間及浸塗次數等覆膜參數,得出以溶液濃度9%、抽取時間10秒及浸塗次數2次時,可以製作出具有良好薄膜品質且兼具柔順性之充填式薄膜型支架模具,並得以將由PCL多元醇改質之光固化材料PCL-TA成功充填至支架流道中,製作出一款得以壓縮至9Fr (3mm)之導管,且能夠將動靜脈廔管擴張至6 mm的生物可降解充填式薄膜型支架。最後,以有限元素分析對支架進行徑向力及抗壓力模擬,並以實驗驗證對支架性能進行探討,實驗結果顯示,當支架由6.6 mm壓縮至6 mm,支架徑向力值為0.0712 N/mm,足以提供當動靜脈廔管阻塞時擴張至6 mm之所需,並經由抗壓力測試模擬值與實驗值的比較結果,驗證了有限元素模型能夠成功預測支架受力與形變情形,證明本研究所製作之AVF充填式薄膜型支架之可行性。


    Before performing hemodialysis treatment, patients should establish reliable vascular access. Among all types of long-term vascular access, arteriovenous fistula(AVF), to engage patients’ autologous artery and vein by fistula surgery, is the most common type to use. Nowadays, all the arteriovenous fistula stents on the market are made of metal material. Using bare-metal stent(BMS) can solve the acute vascular obstruction, but may cause subsequent thrombosis and vascular restenosis. In some severe cases, performing secondary surgery is needed.
    To solve these problems, the study will use 3D printing technology to make polyvinyl alcohol(PVA) rapidly degradable stent, and the dip-coating process will be used to coating polycaprolactone(PCL) film on the PVA stent. In the following, the PVA stent will be hydrolyzed, and then a biodegradable PCL thin-film mold is produced. At last, filling the light-curable material PCL-TA(polycaprolactone-triacrylate), which is modified by PCL triol, into the stent mold to complete the arteriovenous fistula thin film type stent. Developing biodegradable arteriovenous fistula stent can solve the current problems in BMS and prevent performing secondary surgery.
    Referring to the design conception of Mirage bioresorbable micro-fiber scaffold, in this study a PVA stent was made by controlling the printing path and printing parameters. Therefore, it is soaked in deionized water to proceed the post-process to produce a PVA rapid degradation stent with good surface quality. After finishing the PVA stent, the stent was dipped in PCL solution by adjusting the coating parameters to achieve the thin-film type mold with good quality and flexibility, and the result shows that the optimized parameters are the solution concentration 9%, the withdrawal time 10 seconds and with 2 times dip coating. Due to the adequate film thickness and good flexibility, the thin film type mold was successful to fill in the light-curable material PCL-TA, and also proved that it can be crimped into a diameter 3 mm(9 French) implantation catheter and expanded to a diameter of 6 mm. Finally, with the ANSYS finite element analysis and prototype testing, when the stent compress from 6.6mm to 6mm and facilitate the arteriovenous fistula expanding to 6mm, the results show that the fabricated AVF stent can reach the requirement of radial force, 0.0712 N/mm, and verify that the finite element model can successfully predict the stress and deformation of the stent, and prove the feasibility of the design and fabrication of AVF thin film stent.

    摘要 III Abstract V 致謝 VII 第一章、 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 3 第二章、 文獻回顧 7 2.1. 動靜脈廔管 7 2.2. 生物可降解材料 10 2.2.1 聚合物的降解機制 10 2.2.2 聚己內酯(Polycaprolactone, PCL) 11 2.2.3 聚乙烯醇(Polyvinyl Alcohol, PVA)[22] 12 2.2.4 生物可降解支架 13 2.3. 應用積層製造 15 2.3.1 材料擠製成型技術 16 2.3.2 3D列印製作生物可降解支架 17 2.4. 支架覆膜製作 19 2.5. 光固化原理 25 2.5.1. 光起始劑 25 2.5.2. 光固化材料的製備 26 2.5.3. PCL-TA應用於薄膜型支架之研究回顧 29 第三章、 實驗方法與規劃 30 3.1. 實驗規劃 31 3.1.1. 充填式支架製程 31 3.1.2. 模擬充填式支架在體內置放流程 32 3.2. 3D列印製作PVA快速降解支架 34 3.2.1. 3D列印機及線材 34 3.2.2. PVA快速降解支架設計 35 3.2.3. 3D列印路徑規劃 39 3.2.4. 3D列印參數 40 3.2.5. 加熱支架列印軸 41 3.2.6. 支架後處理 41 3.3. 光固化材料合成 42 3.3.1. PCL-TA合成 42 3.3.2. 充填材料光固化性質測試 47 3.3.3. 充填材料黏度測試 48 3.4. 薄膜型支架模具 49 3.4.1. 調配PCL溶液 49 3.4.2. 製作薄膜型支架模具 50 3.4.3. 薄膜厚度量測 52 3.4.4. 薄膜型支架壓縮測試 53 3.4.5. 薄膜型支架流道充填測試 54 3.5. 充填式光固化支架實驗規劃 56 3.6. 模擬分析及實驗驗證 57 3.6.1. 建立有限元素模型 57 3.6.2. 材料性質設定 57 3.6.3. 網格大小收斂性分析 58 3.6.4. 支架徑向力模擬分析 60 3.6.5. 支架徑向力實驗 61 3.6.6. 支架抗壓測試模擬分析 62 3.6.7. 支架抗壓測試實驗 63 3.7. 使用原料及藥品 65 3.8. 使用設備與儀器 66 3.8.1. 3D列印機 66 3.8.2. 電磁加熱攪拌機(Hot Plate and Magnetic Stirrer) 68 3.8.3. 熱風循環烘箱(Cyclic Oven) 70 3.8.4. 超音波洗淨機 (Ultrasonic Cleaner) 71 3.8.5. 掃描式電子顯微鏡(Scanning Electron Microscopes) 72 3.8.6. 壓縮裝置(Crimping Device) 73 3.8.7. Z軸量測平台 74 3.8.8. 紅外線傅立葉光譜儀(Fourier Transform Infrared Spectrometer) 75 3.8.9. 迴轉式動態流變儀(Modular Compact Rheometer) …………………………..…………………………………...75 第四章、 實驗結果與討論 77 4.1. 3D列印PVA快速降解支架 78 4.1.1. 3D列印路徑規劃 78 4.1.2. 3D列印參數 79 4.1.3. 加熱支架列印軸 80 4.1.4. 支架後處理 81 4.2. 光固化材料PCL-TA合成實驗結果 82 4.2.1. PCL-TA合成材料之檢測 82 4.2.2. PCL-TA光固化測試 83 4.2.3. PCL-TA材料黏度 84 4.3. 薄膜型支架模具 86 4.3.1. 製作薄膜型支架模具 86 4.3.2. 薄膜厚度量測 93 4.3.3. 薄膜型支架模具壓縮測試 94 4.3.4. 薄膜型支架模具注水測試 98 4.3.5. 薄膜型支架模具注油測試 99 4.4. 薄膜型支架模具充填光固化材料 101 4.5. 模擬分析及實驗驗證 102 4.5.1. 支架徑向力模擬分析 102 4.5.2. 徑向力實驗結果 103 4.5.3. 徑向力模擬分析與實驗結果之比較 104 4.5.4. 支架抗壓測試模擬分析 105 4.5.5. 抗壓測試實驗結果 106 4.5.6. 抗壓測試模擬分析與實驗結果之比較 107 第五章、 結論與未來展望 110 5.1. 結論 110 5.2. 未來展望 112 參考文獻 113  

    [1] United States Renal Data System, "2020 Annual Data Report." Retrived from https://adr.usrds.org/2020/end-stage-renal-disease/11-international-comparisons
    [2] 衛生福利部健康保險署, "慢性腎臟病防治." Retrived from https://www.nhi.gov.tw/Content_List.aspx?n=D5CC89AE36D48E5E&topn=787128DAD5F71B1A
    [3] 衛生福利部中央健康保險署, "認識透析治療." Retrived from https://www.nhi.gov.tw/mqinfo/Content.aspx?Type=Dialysis&List=6
    [4] 馬偕紀念醫院,"洗腎(血液或腹膜透析)─我該如何選擇呢?." Retrived from https://www.mmh.org.tw/taitam/kid_int/SDM.pdf
    [5] 明暘診所, "血液透析腎友的透析血管保養要注意甚麼呢?." Retrived from https://mingyangclinic.com.tw/casestudies_detail.php?id=61
    [6] Azura vascular care, "Angioplasty and stent procedures." Retrived from https://www.azuravascularcare.com/medical-services/dialysis-access-management/angioplasty-stent-procedures/
    [7] C. V. Bourantas, Y. Onuma, V. Farooq, Y. Zhang, H. M. Garcia-Garcia, and P. W. Serruys, "Bioresorbable scaffolds: current knowledge, potentialities and limitations experienced during their first clinical applications," Int J Cardiol, vol. 167, no. 1, pp. 11-21, 2013.
    [8] L. D. Hou, Z. Li, Y. Pan, M. Sabir, Y. F. Zheng, and L. Li, "A review on biodegradable materials for cardiovascular stent application," Front Mater Sci, vol. 10, no. 3, pp. 238-259, 2016.
    [9] H. S. Park, W. J. Kim, Y. K. Kim, H. W. Kim, B. S. Chol, C. W. Park, Y. O. Kim, C. W. Yang, Y. L. Kim, Y. S. Kim, S. W. Kang, N. H. Kim, and D. C. Jin, "Comparison of outcomes with arteriovenous fistula and arteriovenous graft for vascular access in hemodialysis: a prospective cohort study," Am J Nephrol, vol. 43, no. 2, pp. 120-8, 2016.
    [10] J. C. Harms, S. Rangarajan, C. J. Young, J. Barker-Finkel, and M. Allon, "Outcomes of arteriovenous fistulas and grafts with or without intervention before successful use," J Vasc Surg, vol. 64, no. 1, pp. 155-62, 2016.
    [11] K. Konner, B. Nonnast-Daniel, and E. Ritz, "The arteriovenous fistula," J Am Soc Nephrol, vol. 14, no. 6, pp. 1669-80, 2003.
    [12] J. C. Duque, M. Tabbara, L. Martinez, J. Cardona, R. I. Vazquez-Padron, and L. H. Salman, "Dialysis arteriovenous fistula failure and angioplasty: intimal hyperplasia and other causes of access Failure," Am J Kidney Dis, vol. 69, no. 1, pp. 147-151, 2017.
    [13] N. Pirozzi, N. Mancianti, J. Scrivano, L. Fazzari, R. Pirozzi, and M. Tozzi, "Monitoring the patient following radio-cephalic arteriovenous fistula creation: current perspectives," Vasc Health Risk Manag, vol. 17, pp. 111-121, 2021.
    [14] H. E. Achneck, B. Sileshi, M. Li, E. J. Partington, D. A. Peterson, and J. H. Lawson, "Surgical aspects and biological considerations of arteriovenous fistula placement," Semin Dial, vol. 23, no. 1, pp. 25-33, 2010.
    [15] R. Song, M. Murphy, C. Li, K. Ting, C. Soo, and Z. Zheng, "Current development of biodegradable polymeric materials for biomedical applications," Drug Des Devel Ther, vol. 12, pp. 3117-3145, 2018.
    [16] G. E. Luckachan and C. K. S. Pillai, "Biodegradable polymers- a review on recent trends and emerging perspectives," J Polym Environ, vol. 19, no. 3, pp. 637-676, 2011.
    [17] X. L. Wang, K. K. Yang, and Y. Z. Wang, "Properties of starch blends with biodegradable polymers," J Macromol Sci, Part C: Polym Rev, vol. 43, no. 3, pp. 385-409, 2003.
    [18] A. Folino, A. Karageorgiou, P. S. Calabrò, and D. Komilis, "Biodegradation of wasted bioplastics in natural and industrial environments: a review," Sustain Sci, vol. 12, no. 15, 2020.
    [19] E. Malikmammadov, T. E. Tanir, A. Kiziltay, V. Hasirci, and N. Hasirci, "PCL and PCL-based materials in biomedical applications," J Biomater Sci Polym Ed, vol. 29, no. 7-9, pp. 863-893, 2018.
    [20] Y. W., M. Kunika, and S. Y. Onozawa, "Polymerization of poly(ε-caprolactone) using yttrium triflate," Polym J, vol. Vol. 35, pp. 422-429, 2003.
    [21] 洪莛豐, "生分解性高分子聚己內酯混摻幾丁聚醣為例應用於生醫材料之研究," 碩士論文, 化學工程系, 私立東海大學 2010.
    [22] M. Teodorescu, M. Bercea, and S. Morariu, "Biomaterials of poly(vinyl alcohol) and natural polymers," Polym Rev, vol. 58, no. 2, pp. 247-287, 2018.
    [23] A. J. Guerra, P. Cano, M. Rabionet, T. Puig, and J. Ciurana, "3D-printed PCL/PLA composite stents: towards a new solution to cardiovascular problems," Materials (Basel), vol. 11, no. 9, 2018.
    [24] H. Y. Ang, H. Bulluck, P. Wong, S. S. Venkatraman, Y. Huang, and N. Foin, "Bioresorbable stents: current and upcoming bioresorbable technologies," Int J Cardiol, vol. 228, pp. 931-939, 2017.
    [25] A. J. Guerra and J. Ciurana, "3D-printed bioabsordable polycaprolactone stent: The effect of process parameters on its physical features," Mater. Des., vol. 137, pp. 430-437, 2018.
    [26] P. Dudek, "FDM 3D printing technology in manufacturing composite elements," Arch. Metall. Mater., vol. 58, no. 4, pp. 1415-1418, 2013.
    [27] K. Tappa and U. Jammalamadaka, "Novel biomaterials used in medical 3D printing techniques," J Funct Biomater, vol. 9, no. 1, 2018.
    [28] L. Li, Q. Sun, C. Bellehumeur, and P. Gu, "Composite modeling and analysis for fabrication of FDM prototypes with locally controlled properties," J Manuf Process, vol. 4, no. 2, pp. 129-141, 2002.
    [29] A. R. A. Guerra, and J. de Ciurana, "A novel 3D additive manufacturing machine to biodegradable stents," Procedia Manuf., vol. 13, pp. 718-723, 2017.
    [30] L. Zhang, X. Chen, and M. Liu, "Research of customized aortic stent graft manufacture," IOP Conf Ser Mater Sci Eng, vol. 187, 2017.
    [31] C. D. M., Antonio J. Guerra, Elisabetta Ceretti, and Joaquim Ciurana, "Real bifurcated vascular grafts manufacturing for tissue engineering," Procedia CIRP, vol. 89, pp. 92-97, 2020.
    [32] 張弘銘, "甲基丙烯酸羥乙酯含量對紫外光固化聚氨基甲酸酯之性質研究," 碩士論文, 有機高分子系, 國立台北科技大學 2016.
    [33] Turkchem, "Curing of epoxy resins via photopolymerization and use in composites." Retrived from https://www.turkchem.net/curing-of-epoxy-resins-via-photopolymerization-and-use-in-composites.html
    [34] C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, "Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation," Biomaterials, vol. 26, no. 11, pp. 1211-8, 2005.
    [35] M. K. Y., H.Y. Kweon, I. K. Park, T. H. Kim, H. C. Lee, H. S. Lee, J. S. Oh, T. Akaike, and C. S. Cho, "A novel degradable polycaprolactone networks for tissue engineering," Biomaterials, vol. 24, pp. 801-808, 2003.
    [36] 邱品慈,"薄膜型結腸支架與光固化填充材料研究," 碩士論文, 機械工程系, 國立台灣科技大學 2019.
    [37] L. S. Lauvao, D. M. Ihnat, K. R. Goshima, L. Chavez, A. C. Gruessner, and J. L. Mills, Sr., "Vein diameter is the major predictor of fistula maturation," J Vasc Surg, vol. 49, no. 6, pp. 1499-504, 2009.
    [38] S. H. Su, R. Y. N. Chao, C. L. Landau, K. D. Nelson, R. B. Timmons, R. S. Meidell, and R. C. Eberhart, "Expandable bioresorbable endovascular stent. I. fabrication and properties," Ann Biomed Eng, vol. 31, no. 6, pp. 667-77, 2003.
    [39] C. H. Huang, S. Y. Lee, S. Horng, L. G. Guy, and T. B. Yu, "In vitro and in vivo degradation of microfiber bioresorbable coronary scaffold," J Biomed Mater Res B Appl Biomater, vol. 106, no. 5, pp. 1842-1850, 2018.
    [40] Ciba, "Irgacure 2959 absorption spectrum."
    [41] B. J. Green, K. S. Worthington, J. R. Thompson, S. J. Bunn, M. Rethwisch, E. E. Kaalberg, C. Jiao, L. A. Wiley, R. F. Mullins, E. M. Stone, E. H. Sohn, B. A. Tucker, and C. A. Guymon, "Effect of molecular weight and functionality on acrylated poly(caprolactone) for stereolithography and biomedical applications," Biomacromolecules, vol. 19, no. 9, pp. 3682-3692, 2018.
    [42] D. Dabir, A. Feisst, D. Thomas, J. A. Luetkens, C. Meyer, A. Kardulovic, M. Menne, U. Steinseifer, H. H. Schild, and D. L. R. Kuetting, "Physical properties of venous stents: an experimental comparison," Cardiovasc Intervent Radiol, vol. 41, no. 6, pp. 942-950, 2018.
    [43] A. Wressnegger, A. Kaider, and M. A. Funovics, "Self-expanding nitinol stents of high versus low chronic outward force in de novo femoropopliteal occlusive arterial lesions (BIOFLEX-COF trial): study protocol for a randomized controlled trial," Trials, vol. 18, no. 1, p. 594, 2017.

    無法下載圖示 全文公開日期 2031/10/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE