簡易檢索 / 詳目顯示

研究生: 王煥彰
Huan-Chang Wang
論文名稱: 銀奈米粒子修飾二氧化鈦光觸媒之製備與應用
The preparation of silver nanoparticles decorated titanium dioxide photocatalysts and its applications.
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳良益
Liang-Yih Chen
王孟菊
Meng-Jiy Wang
陳景翔
Ching-Hsiang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 120
中文關鍵詞: 二氧化鈦光觸媒奈米銀光觸媒薄膜抗菌
外文關鍵詞: Titanium dioxide, photocatalyst, silver nanoparticle, photocatalyst film, anti-bacterial
相關次數: 點閱:287下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,主要探討以奈米銀粒子修飾於二氧化鈦光觸媒表面後進光降解與抗菌效果之研究。在此,主要以粉體和薄膜兩種不同的型態來進行討論。在粉體型態方面,主要以市售P25二氧化鈦奈米粒子為主要的粉體來源;而在薄膜型態方面則是藉由噴塗技術,探討低溫與高溫製程進行二氧化鈦奈米顆粒的製程參數。至於在奈米銀顆粒的沉積技術上,則是藉用光還原法將奈米銀粒子修飾於二氧化鈦奈米顆粒粉體與薄膜上。在光降解研究中,主要以甲基橙作為探測分子,進行光降解動力探討。由分析結果可以得知:奈米銀修是二氧化鈦光觸媒的系統中,其光降解的過程均可使用準一階動力反應來進行模擬,代表甲基橙主要是吸附於光觸媒表面後,在與氫氧根自由基進行降解程序。在此,奈米銀顆粒的添加有助於提升光降解的效能,主要可能的原因是:奈米銀顆粒在吸收其表面電漿共振能量後,與二氧化鈦產生偶極-偶極作用,進一步提高二氧化鈦的電子-電洞對的生成,進而提高光降解的反應進行。在本研究中,奈米銀顆粒修飾二氧化鈦粉體的最佳光降解速率常數為0.0418 min-1;而在薄膜的型態下,低溫和高溫製程與高溫製程所獲得的光降解速率常數則分別為0.0145 min-1與0.0155 min-1。至於在抗菌性的研究上,則以大腸桿菌與金黃葡萄球菌進行測試。由試驗結果得知:在不照光條件下,即使二氧化鈦表面具有較高比例的奈米銀粒子,僅對大腸桿菌具有抗菌效果;但若是在照光條件下,若是二氧化鈦表面具有較高比例的奈米銀粒子,對於兩個菌種都可以產生一定程度的抗菌效果。


    This study mainly focus on the research of photocatalysis and antibacterial properties of silver nanoparticle modified titanium dioxide. Here, commercially available P25 is used as the powder source. Spray process is applied on film fabrication, and the temperature applied in film fabrication process were controlled, both high temperature and room temperature process were trailed, for the deposition of silver nanoparticle, photo-assisted reduction was applied. In the degradation processes, methyl orange aqueous solution was chosen as an indicating material in the study of photocatalysis, and by analyzing the results, all the degradation profiles of silver modified titanium dioxide photocatalysts follows pseudo-first order degradation process, which indicates methyl orange was adsorbed on the surface of catalysts, then reacted with OH radicals for its further degradation. Here, by modifying silver nanoparticle, the photo degradation property of titanium dioxide catalyst is significantly enhanced, which may be caused by the surface plasmon resonance of silver nanoparticle, which could induce the dipole-dipole interaction with titanium dioxide, and enhance the formation of electron-hole pair, thus improve the photo degradation capability. In the research, the silver modified powder catalysts has a best degradation rate constant of 0.0418 min-1, for the film catalysts, the room temperature and the high temperature fabricated film has an optimum rate constant of 0.0145 min-1 and 0.0155 min-1, respectively. In the exams of antibacterial property, both E. coli and S. aureus were chosen for the test. As the results from the antibacterial test, under dark condition, even with high silver loading concentration, the catalyst films can only inhibit the growth of E. coli, however, the high concentration silver loaded catalyst film shows an effective inhibition for both kind of microorganisms.

    中文摘要 2 Abstract 3 致謝 5 目錄 6 表目錄 10 圖目錄 11 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 理論基礎與文獻回顧 4 2-1 光觸媒的基本特性 4 2-2 二氧化鈦的基本性質 6 2-3 光降解的動力學特性 12 2-4 奈米銀顆粒的抗菌性質 21 2-5 奈米銀顆粒在二氧化鈦上的作用 24 2-5-1 蕭特基介面 24 2-5-2 表面電漿共振 26 2-6 接觸角和表面型態間的關係 31 第三章 實驗方法與步驟 34 3-1 實驗流程圖 34 3-2 實驗藥品設備與分析儀器 35 3-2-1 實驗藥品 35 3-2-2 實驗設備 40 3-2-3 分析儀器 43 3-3 實驗步驟 52 3-3-1 製備奈米銀顆粒 52 3-3-2 清洗基板 53 3-3-3 製備二氧化鈦薄膜 55 3-3-4 在二氧化鈦薄膜表面附著奈米銀顆粒 57 3-3-5 製備奈米銀修飾的二氧化鈦粉末 58 3-3-6 光降解測試 60 3-3-7 抗菌測試 63 第四章 結果與討論 66 4-1. 以銀奈米粒子行二氧化鈦奈米材料之表面修飾之製程探討 66 4-1-1 二氧化鈦進行奈米銀表面修飾後的特性分析 66 4-1-2 甲基橙的光降解研究 75 4-1-3 應用於抗菌的研究 81 4-2. 以低溫製程進行奈米銀粒子修飾之二氧化鈦光觸媒薄膜之應用研究 84 4-2-1 噴塗漿料的最適化條件探討 84 4-2-2應用於甲基橙的光降解研究 94 4-3. 以高溫製程進行奈米銀粒子修飾之二氧化鈦光觸媒薄膜之應用研究 98 4-3-1噴塗漿料的最適化條件和噴塗情形 98 4-3-2應用於甲基橙光降解研究 104 4-3-3 應用於抗菌的研究 109 第五章 結論 115 第六章 參考資料 116

    1. A. Tanaka; K. Fuku; T. Nishi; K. Hashimoto; H. Kominami, The Journal of Physical Chemistry C, 117 (33), 16983–16989, (2013).
    2. K.-i. Okamoto; Y. Yamamoto; H. Tanaka; M. Tanaka; A. Itaya, Bulletin of the Chemical Society of Japan, 58, 2015-2022, (1985).
    3. D. Zhao; C. Chen; C. Yu; W. Ma; J. Zhao, The Journal of Physical Chemistry C, 113 (30), 13160–13165, (2009).
    4. F. Dong; Z. Wang; Y. Li; W.-K. Ho; S. C. Lee, Environmental Science and Technology, 48 (17), 10345–10353, (2014).
    5. NREL Reference Solar Spectral Irradiance: ASTM G-173.
    6. A. Fujishima; K. Honda, Nature, 238, 37-38, (1972).
    7. R. Daghrir; P. Drogui; D. Robert, Industrial & Engineering Chemistry Research, 52, 3581−3599, (2013).
    8. B. Ohtani, Chemistry Letters, 37, 217–229, (2008).
    9. H. Gerischer; A. Heller, The Journal of Physical Chemistry, 95 (13), 5261–5267, (1991).
    10. J. Ouyang; M. Chang; X. Li, Journal of Materials Science, 47, 4187−4193, (2012).
    11. C. D. Valentina; E. Finazzia; G. Pacchionia; A. Sellonib; S. Livraghic; M. C. Paganinic; E. Giamelloc, Chemical Physics, 339, 44–56, (2007).
    12. D. Dambournet; I. Belharouak; K. Amine, Chemistry of Materials, 22 (3), 1173–1179, (2010).
    13. M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 145-153, (2003).
    14. M. Grätzel, Journal of Photochemistry and Photobiology A: Chemistry, 16, 3-14, (2004).
    15. N. G. Park, The Journal of Physical Chemistry Letters 4, 2423-2429, (2013).
    16. F. K. Aldibaja; L. Badia; E. Mas-Marz; R. S; S´anchez; E. M. Barea; I. Mora-Sero, Journal of Materials Chemistry A, 3, 9194-9200, (2015).
    17. S. U. M. Khan; M. Al-Shahry; W. B. I. Jr., Science, 297, 2243-2245, (2002).
    18. M. Ni; M. K. H. Leung; D. Y. C. Leung; K. Sumathy, Renewable and Sustainable Energy Reviews, 11, 401-425, (2007).
    19. S.-D. Mo; W. Y. Ching, Physical Review B, 51, 13023-13032, (1995).
    20. D. O. Scanlon; C. W. Dunnill; J. Buckeridge; S. A. Shevlin; A. J. Logsdail; S. M. Woodley; C. R. A. Catlow; M. J. Powell; R. G. Palgrave; I. P. Parkin; G. W. Watson; T. W. Keal; P. Sherwood; A. Walsh; A. A. Sokol, Nature Materials, 12, 798–801, (2013).
    21. D. Reyes-Coronado; G. Rodrıguez-Gattorno; M. E. Espinosa-Pesqueira; C. Cab; R. D. Coss; G. Oskam, Nanotechnology, 19, 145605-145614, (2008).
    22. R. Su; R. Bechstein; L. Sø; R. T. Vang; M. Sillassen; B. o. Esbj€ornsson; A. Palmqvist; F. Besenbacher, The Journal of Physical Chemistry C, 115, 24287–24292, (2011).
    23. N. Yuangpho; S.T.T.Le; T.Treerujiraphapong; W.Khanitchaidecha; A.Nakaruk, Physical E, 67, 18-22, (2015).
    24. Z. N Ambrus; K. R. Mogyoro´si; A. G. Szalai; Tu¨nde Alapi; K. Demeter; A. S. Dombi; P. l. Sipos, Applied Catalysis A: General, 304, 153-161, (2008).
    25. Y. K. Kho; A. Iwase; W. Y. Teoh; L. Mädler; A. Kudo; R. Amal, The Journal of Physical Chemistry C, 114, 2821–2829, (2010).
    26. M. R. Hoffmann; S. T. Martin; W. Choi; D. W. Bahnemannt, Chemical Review, 95, 69-96 (1995).
    27. R. D. Barreto; K. A. Gray; K. Anders, Water Research, 29, 1243–1248, (1995).
    28. E. R. Carraway; A. J. Hoffman; M. R. Hoffmann, Environmental Science and Technology, 28 (5), 786–793, (1994).
    29. C. Richard, Journal of Photochemistry and Photobiology A: Chemistry, 72, 179–182, (1993).
    30. T. H. Jeon; W. Choi; H. Park, the Journal of Physical Chemistry C, 115 (14), 7134–7142, (2011).
    31. D. Monllor-Satoca; T. Tachikawa; T. Majima; W. Choi, Environmental Science and Technology, 45 (5), 2030–2031, (2011).
    32. C. M. Wang; A. Heller; H. Gerischer, Journal of the American Chemical Society, 114 (13), 5230–5234, (1992).
    33. J. Choi; H. Park; M. R. Hoffmann, The Journal of Physical Chemistry C, 114, 783–792, (2010).
    34. X. Wu; S. Yin; Q. Dong; C. Guo; T. Kimura; J.-i. Matsushita; T. Sato, The Journal of Physical Chemistry C, 117, 8345−8352, (2013).
    35. T. K. Kim; M. N. Lee; S. H. Lee; Y. C. Park; C. K. Jung; J.-H. Boo, Thin Solid Films, 475, 171–177, (2005).
    36. S. Kurian; H. Seo; H. Jeon, The Journal of Physical Chemistry C, 117, 16811−16819, (2013).
    37. P. Chowdhury; J. Moreira; H. Gomaa; A. K. Ray, Industrial and Engineering Chemistry Engineering, 51 (12), 4523–4532, (2012).
    38. H. Park; Y. Park; W. Kimb; W. Choib, Journal of Photochemistry and Photobiology C : Photochemistry Reviews, 15, 1– 20, (2013).
    39. A. Houas; H. Lachheb; M. Ksibi; E. Elaloui; C. Guillard; J.-M. Herrmann, Applied Catalysis B: Environmental, 31, 145–157, (2001).
    40. M. Rochkind; S. Pasternak; Y. Paz, Molecules, 20, 88-110, (2015).
    41. E. Grabowsk; J. Reszczynsk; A. Zalesk, Water Research, 46, 5453-5471, (2012).
    42. W. Wang; P. Serp; P. Kalck; J. L. ı. Faria, Journal of Molecular Catalysis A: Chemical, 235, 194-199, (2005).
    43. C.-H. Chiou; C.-Y. Wu; R.-S. Juang, Chemical Engineering Journal, 139, 322-329, (2008).
    44. Z. Guo; R. Ma; G. Li, Chemical Engineering Journal, 119, 55-59, (2006).
    45. A. Sobczy´nski; Ł. Duczmal; W. Zmudzi´nski, Journal of Molecular Catalysis A: Chemical, 213, 225-230, (2003).
    46. T. Chen; Y. Zheng; J.-M. Lin; G. Chena, American Society for Mass Spectrometry, 19, 997-1003, (2008).
    47. M. Turner; V. B. Golovko; O. P. H. Vaughan; P. Abdulkin; A. Berenguer-Murcia; M. S. Tikhov; B. F. G. Johnson; R. M. Lambert, Nature, 454, 981-983, (2008).
    48. N. Nath; A. Chilkoti, Analytical Chemistry, 74, 504–509, (2002).
    49. R. Elghanian; J. J. Storhoff; R. C. Mucic; R. L. Letsinger; C. A. Mirkin, Science, 277, 1078-1081, (1997).
    50. Y. Li; P. Leung; L. Yao; Q. W. Song; E. Newton, Journal of Hospital Infection 62, 58–63, (2006).
    51. G. Reiss; A. Hütten, Nature Materials, 4, 725 - 726, (2005).
    52. W. Luo; W. Hu; S. Xiao, The Journal of Physical Chemistry C, 112, 2359–2369, (2008).
    53. S. K. Ghosh; S. Kundu; M. Mandal; T. Pal, Langmuir, 18, 8756–8760, (2002).
    54. S. K. Ghosh; A. Pal; S. Kundu; S. Nath; T. Pala, Chemical Physics Letters, 395, 366–372, (2004).
    55. S. K. Ghosh; A. Pal; S. Nath; S. Kundu; S. Panigrahi; T. Pal, Chemical Physics Letters, 412, 5–11, (2005).
    56. R. Kubo, Journal of the Physical Society of Japan, 17, 975-986, (1962).
    57. J. R. Morones; J. L. Elechiguerra; A. Camacho; K. Holt; J. B. Kouri; J. T. Ramírez; M. J. Yacaman, Nanotechnology, 16, 2346–2353, (2005).
    58. H. J. Klasen, Burns, 26, 131–138, (2000).
    59. J. S. Kim; E. Kuk; K. N. Yu; J.-H. Kim; S. J. Park; H. J. Lee; S. H. Kim; Y. K. Park; Y. H. Park; C.-Y. Hwang; Y.-K. Kim; Y.-S. Lee; D. H. Jeong; M.-H. Cho, Nanomedicine: Nanotechnology, Biology and Medicine, 3, 95–101, (2007).
    60. S. Liau; D. Read; W. Pugh; J. Furr, Letters in Applied Microbiology, 25, 279–283, (1997).
    61. Q. L. Feng; J. Wu; G. Q. Chen; F. Z. Cui; T. N. Kim; J. O. Kim, Journal of Biomedical Materials Research Part A, 52, 662–668 (2000).
    62. E. Iglesias-Silva; J. Rivas; L. M. L. Isidro; M. A. López-Quintela, Journal of Non-Crystalline Solids, 353, 829–831, (2007).
    63. H. Xu; K. Suslick, Advanced Materials, 22, 1078–1082, (2010).
    64. D. M. Tobaldi; C. Piccirillo; R. C. Pullar; A. F. Gualtieri; M. P. Seabra; P. M. L. Castro; J. A. Labrincha, The Journal of Physical Chemistry C, 118, 4751−4766, (2014).
    65. H. Zhan; G. Chen, Environmental Science and Technology, 43, 2905–2910, (2009).
    66. K. Page; R. G. Palgrave; I. P. Parkin; M. Wilson; S. L. P. Savin; A. V. Chadwickc, Journal of Materials Chemistry 17, 95–104, (2011).
    67. B. Yu; K. M. Leung; Q. Guo; W. M. Lau; J. Yang, Nanotechnology, 22, 115603-115612, (2011).
    68. S. M. Sze; K. K. Ng, Physics of Semiconductor Devices, 3rd Edition. Wiley: New York, 2007.
    69. A. W. Bott, Current Separations, 17, 87-92, (1998).
    70. P. K. Jain; X. Huang; I. H. El-Sayed; M. A. El-Sayed, Plasmonic, 2, 107-118, (2007).
    71. J. Homol; S. S. Yee; G. Gauglitz, Sensors and Actuators B: Chemical, 54, 3-15, (1999).
    72. P. Pattnaik, Applied Biochemistry and Biotechnology, 126, 79-92, (2005).
    73. B. Palpant; B. Prével; J. Lermé; E. Cottancin; M. Pellarin; M. Treilleux; A. Perez; J. L. Vialle; M. Broyer, Physical Review B, 57, (1998).
    74. S. K. Ghosh; T. Pa, Chemical Reviews, 107 4797–4862, (2007).
    75. S. K. Cushing; J. Li; F. Meng; T. R. Senty; S. Suri; M. Zhi; M. Li; A. D. Bristow; a. N. Wu, Journal of the American Chemical Society, 134, 5033−15041, (2012).
    76. T. Young, Philosophical Transactions of the Royal Society, 95, 65-87, (1805).
    77. R. N. Wenzel, Industrial & Engineering Chemistry Research, 28, 988–994, (1936).
    78. A. B. D. Cassie; S. Baxter, Transactions of the Faraday Society, 40, 546-551 (1944).
    79. M. T. Madigan; J. M. Martinko, Brock Biology of Microorganisms. Prentice Hall: New Jersey, 2006.
    80. Y. Tian; T. Tatsuma, Journal of the American Chemical Society, 127, 7632-7637, (2005).

    QR CODE