簡易檢索 / 詳目顯示

研究生: 黃浩維
Hao-Wei HUANG
論文名稱: 單晶碳化矽晶圓之鑽石線鋸加工模式分析研究
Analysis on Diamond Wire Sawing Process of Single Crystalline Silicon Carbide Wafer
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 趙崇禮
none
鄭裕隆
none
康來成
none
鍾俊輝
Chun-hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 155
中文關鍵詞: 複線式鑽石線鋸4H單晶碳化矽搖擺切片模式材料移除率
外文關鍵詞: Multi-wire diamond sawing, 4H-SiC, Rocking mode, Material removal rate.
相關次數: 點閱:340下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單晶碳化矽因材料特性上擁有多項優點,於功率元件市場中備受重視,然而其高硬度及耐化學性質造成基板製造之困難,本研究分別從磨料移除材料和線網運動觀點分析複線式鑽石線鋸加工製程(Multi-wire diamond wire sawing, MW-DWS),並使用4H單晶碳化矽(4H-SiC)晶錠特性如硬度及破裂韌性,進行材料移除率估算,並使用等效切屑觀念解釋線速度以及工件進給速度於切割品質影響和分析搖擺線鋸模式,使用Matlab程式模擬自行推導之線網方程式,藉以觀察線網軌跡,計算不同角度下之接觸長度,由模擬分析結果能夠得知,單顆磨料之材料移除率(MRR)將隨著工件之破裂韌性上升而下降,但將與材料硬度成正比關係,而搖擺運動模式則可以減少50%之切割長度,降低等效切屑厚度以降低表面粗糙度,而搖擺角度對於切割長度並無明顯影響,並完成2吋和4吋4H單晶碳化矽線鋸切片。實驗結果顯示,進給速度會影響切片後之表面粗糙度及TTV,而搖擺角將影響切片後之線痕,於未來研究能夠朝向切片製程中鑽石磨耗特性,以修正材料移除率估算。


    Single crystalline silicon carbide has become an important material in power device due to its material properties of low power consumption and stability in high temperature. However, its high hardness and chemical resistance induce the difficulty of fabrication. Multi-wire diamond wire sawing (MW-DWS) has been analyzed by abrasion model and wire kinematic model. This study aims to develop the material removal rate (MRR) prediction by mechanical property of 4H single crystalline SiC, as given hardness and fracture toughness. Concept of equivalent chip thickness has been used to explain the relationship between speed ratio of wire speed, feed rate and surface roughness of sliced wafer with rocking mode. Tracing of wire web is simulated by a developed wire rocking equation in Matlab program and the contact length between ingot and diamond wire can be estimated. Results of simulation show that the MRR increases with the hardness and decreases with the fracture toughness. Rocking mode can decrease the cutting length of diamond wire of ingot materials by 50 percent and also decrease the equivalent chip thickness to improve the surface roughness. However, the rocking angle has less impact on the cutting length. Slicing experiments of 2 and 4 inch 4H SiC have been conducted. Results have shown that the feed speed affects surface roughness and TTV. Rocking angle has effect on saw mark patten. Future study can focus on the wear of diamond wire to improve MRR during slicing process.

    摘要III AbstractIV 誌謝V 目錄VI 圖目錄IX 表目錄XIV 符號表XVI 第一章 緒論1 1.1研究背景1 1.2研究目的與方法3 1.3論文架構4 第二章 文獻回顧6 2.1晶圓切片製程6 2.1.1內圓鋸切片6 2.1.2複線式游離磨料切片6 2.1.3複線式固定磨料切片7 2.2碳化矽晶體結構介紹9 2.3複線式線鋸切片文線回顧12 2.4單晶碳化矽材料特性文獻回顧16 2.5單晶碳化矽加工文獻回顧18 2.6專利文獻回顧21 2.7文獻回顧總結24 第三章 搖擺模式鑽石線鋸原理與介紹25 3.1製程控制方法25 3.1.1幾何材料移除率估算25 3.1.2耗線量計算28 3.2鑽石磨料切削機制34 3.2.1壓印破壞模型35 3.2.2磨耗移除材料模型37 3.2.3材料移除率計算39 3.2.4壓印破壞材料移除率41 3.2.5磨損磨耗材料移除率42 3.3磨料受力計算44 3.3.1y方向磨料受力分析44 3.3.2z方向磨料受力分析46 3.4線網受力分析48 3.5運動分析50 3.5.1等效切屑厚度評估50 3.5.2搖擺模式線網方程式推導54 3.5.3不同搖擺角材料移除率估算63 3.6Matlab模擬64 第四章 複線式鑽石線鋸實驗設備與規劃67 4.1實驗耗材67 4.1.1碳化矽晶錠67 4.1.2切片用鑽石線68 4.2複線式鑽石線鋸實驗設備70 4.2.1複線式線鋸切片機70 4.2.2線鋸實驗流程72 4.3實驗規劃73 4.3.1切片參數設定74 4.3.2碳化矽基板總厚度變異量測79 4.3.3碳化矽基板表面粗糙度量測79 第五章 鑽石線鋸實驗結果與討論80 5.1材料移除率比較81 5.2碳化矽基板總厚度變異量84 5.3彎曲度(Bow)/翹曲度(Warp) 量測93 5.4表面形貌分析95 5.5實驗結果綜合討論106 第六章 結論與建議108 6.1結論108 6.2建議109 參考文獻110 附錄A DWS-150機台之規格表115 附錄B 碳化矽基板表面粗糙度量測116 附錄C 鑽石線拉伸試驗及表面形貌130 附錄D 彎曲度與翹曲度量測結果132 附錄E Saw mark patten134

    [1]Nikkei Electronics, "NE Handbook series Power Devices", Nikki Business Publications. , 2012.
    [2]"SiC Modules, Devices and Substrates for Power Electronics Market 2014 Report", Yole Developpement2014.
    [3]M. Wijesundara and R. Azevedo, "Silicon carbide microsystems for harsh environments", 2011.
    [4]H. J. Möller, "Basic Mechanisms and Models of Multi‐Wire Sawing", Advanced Engineering Materials, vol. 6, pp. 501-513, 2004.
    [5]C. B. Carter and M. G. Norton, "Ceramic materials: science and engineering", 2007.
    [6]S. E. Saddow, "Silicon carbide biotechnology: a biocompatible semiconductor for advanced biomedical devices and applications", 2012.
    [7]W. Clark, A. Shih, C. Hardin, R. Lemaster, and S. McSpadden, "Fixed abrasive diamond wire machining—part I: process monitoring and wire tension force," International Journal of Machine Tools and Manufacture, vol. 43, pp. 523-532, 2003.
    [8]W. Clark, A. Shih, R. Lemaster, and S. McSpadden, "Fixed abrasive diamond wire machining—part II: experiment design and results," International Journal of Machine Tools and Manufacture, vol. 43, pp. 533-542, 2003.
    [9]梁峻碩,“線鋸切割太陽能基板之研究”,國立台灣科技大學,機械工程研究所碩士論文,2008。
    [10]C. C. A. Chen and P. H. Chao, "Surface texture analysis of fixed and free abrasive machining of silicon substrates for solar cells", in Advanced Materials Research, 2010, pp. 177-180.
    [11]E. Teomete, "Roughness damage evolution due to wire saw process", International Journal of Precision Engineering and Manufacturing, vol. 12, pp. 941-947, 2011.
    [12]E. Teomete, "Investigation of long waviness induced by the wire saw process", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 225, pp. 1153-1162, 2011.
    [13]許仙薇,“搖擺運動於單晶氧化鋁基板鑽石線鋸切割影響之研究”,國立台灣科技大學,機械工程研究所碩士論文,2013。
    [14]H. Kim, D. Kim, C. Kim, and H. Jeong, "Multi-wire sawing of sapphire crystals with reciprocating motion of electroplated diamond wires", CIRP Annals-Manufacturing Technology, vol. 62, pp. 335-338, 2013.
    [15]詹明賢,“單晶與多晶矽基板鑽石線鋸加工之切屑分析研究”,國立台灣科技大學,機械工程研究所碩士論文,2014。
    [16]D. Kim, H. Kim, S. Lee, and H. Jeong, "Effect of initial deflection of diamond wire on thickness variation of sapphire wafer in multi-wire saw", International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 2, pp. 117-121, 2015.
    [17]D. Ravindra and J. Patten, "Determining the ductile to brittle transition (DBT) of a single-crystal 4H-SiC wafer by performing nanometric cutting", Precision Grinding and Abrasive Technology at SME International Grinding Conference, 2007.
    [18]C. R. Eddy, P. Wu, I. Zwieback, B. L. VanMil, R. L. Myers-Ward, J. L. Tedesco, et al., "Microhardness of 6H-and 4H-SiC Substrates", in Materials Science Forum, 2009, pp. 323-326.
    [19]J. Yan, X. Gai, and H. Harada, "Subsurface damage of single crystalline silicon carbide in nanoindentation tests", Journal Of Nanoscience and Nanotechnology, vol. 10, pp. 7808-7811, 2010.
    [20]C. W. Hardin, J. Qu, and A. J. Shih, "Fixed abrasive diamond wire saw slicing of single-crystal silicon carbide wafers", Materials and Manufacturing Processes, vol. 19, pp. 355-367, 2004.
    [21]H. Kasuga, H. Ohmori, T. Mishima, Y. Watanabe, and W. Lin, "Investigation on mirror surface grinding characteristics of SiC materials", Journal of Ceramic Processing Research, vol. 10, pp. 351-354, 2009.
    [22]X. Y. Wang, Y. Li, and S. J. Li, "Study on the Impact of the Cutting Process of Wire Saw on SiC Wafers", Applied Mechanics and Materials, vol. 120, pp. 593-597, 2012.
    [23]H. Maeda, R. Takanabe, A. Takeda, S. Matsuda, and T. Kato, "High-speed slicing of SiC ingot by high-speed multi-wire saw", in 15th International Conference on Silicon Carbide and Related Materials, ICSCRM 2013, September 29, 2013 - October 4, 2013, Miyazaki, Japan, 2014, pp. 771-775.
    [24]T. Komeda, "Wire saw", US 7,387,118 B2 2008.
    [25]徐軍,“一種超硬晶體切割方法”,大陸專利CN101386192 A, 2009。
    [26]張革,“旋轉點切割大尺寸碳化矽晶體裝置”,大陸專利CN1724234 A,2009。
    [27]高玉強,“一種利用金剛石線切割大直徑碳化矽單晶的方法和設備”,大陸專利CN103722625 A,2014。
    [28]B. R. Lawn, A. Evans, and D. Marshall, "Elastic/plastic indentation damage in ceramics: the median/radial crack system", Journal of the American Ceramic Society, vol. 63, pp. 574-581, 1980.
    [29]K.-H. Zum Gahr, "Microstructure and wear of materials", 1987.
    [30]M. Chen, K. Kato, and K. Adachi, "The comparisons of sliding speed and normal load effect on friction coefficients of self-mated Si 3 N 4 and SiC under water lubrication", Tribology International, vol. 35, pp. 129-135, 2002.
    [31]S. Malkin, "Grinding Technology:Theory and Applications of Machining with Abrasives", 1989.
    [32]I. D. Marinescu, W. B. Rowe, B. Dimitrov, and I. Inaski, "Tribology of abrasive machining processes", 2004.
    [33]I. M. Hutchings, "Tribology: friction and wear of engineering materials", 1992.
    [34]楊竣凱,“複合式能量化學機械拋光於單晶碳化矽基板平坦化製程之研究”,國立台灣科技大學,機械工程研究所碩士論文, 2014。
    [35]P. Vashishta, R. K. Kalia, A. Nakano, and J. P. Rino, "Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide", Journal of Applied Physics, vol. 101, p. 103515, 2007.
    [36]P. Pirouz, M. Zhang, J. Demenet, and H. Hobgood, "Transition from brittleness to ductility in SiC", Journal of Physics: Condensed Matter, vol. 14, p. 12929, 2002.
    [37]M. Kikuchi, Y. Takahashi, T. Suga, S. Suzuki, and Y. Bando, "Mechanochemical polishing of silicon carbide single crystal with chromium (III) oxide abrasive", Journal of the American Ceramic Society, vol. 75, pp. 189-194, 1992.

    QR CODE