簡易檢索 / 詳目顯示

研究生: 高煥濬
Huan-Jiun Kao
論文名稱: 線放電加工配合輔助電極於工具鋼之表面改質研究
The study of surface modification using assisted electrode in wire electrical discharge machining of tool steel
指導教授: 郭俊良
Chun-liang Kuo
口試委員: 鍾俊輝
Chun-hui Chung
劉孟昆
M.K Liu
蔡宏營
Hung-yin Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 60
中文關鍵詞: 表面改質線放電加工材料移除率表面粗糙度顯微組織表面微硬度
外文關鍵詞: surface modification, WEDM, material removal rate, surface roughness, microstructure, micro-hardness
相關次數: 點閱:403下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗目的在於研究輔助電極 (A6061T6) 以串聯夾持目標工件 (SKD11) 的方式,在線放電加工 (WEDM) 時,將輔助電極的移除材料以鍍附 (Coating) 或合金化 (Alloying) 的方式附著於目標工件之加工表面達到表面改質的效果。利用田口實驗方法 (Taguchi Methods) 與變異數分析 (ANOVA),找出操作參數對於表面改質、材料移除率、表面粗糙度之間關係的影響。實驗考慮四因子、三水平的田口直交表 (L9)。並以掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)、X光能譜散佈分析儀 (Energy Dispersive Spectrometer, EDS),與X光繞射分析 (XRD) 等分析設備,對SKD11試片之加工表面進行表面分析,以觀察表面改質的情形。


    This work is to evaluate the developed surface modification process by using WEDM in a stack order workpiece material. The source workpiece material selected as aluminum alloy (A6061T6) whilst the target workpiece material for surface modification is tool steel (SKD11). In the wire discharge machining, the thermos-electrical induced heat produces melting action on the workpiece surface to remove material and simultaneously the removed particles or residues are molten and adhered on the target workpiece for the migration of elements and the corresponding surface modification. The analysis tools utilized in this work are based on statistical methods (ANOVA and Taguchi Orthogonal Array) for the examinations of the significance on the operating parameters. Performance of surface modification is characterized by the measurements of the material removal, surface roughness, microstructure and micro-hardness on the machined surface.

    誌謝 摘要 Abstract 目錄 圖目錄 表目錄 第一章 研究介紹 第二章 文獻回顧 2.1 粉末輔助放電加工之表面改質 2.2 複合電極材料放電加工之表面改質 2.3 表面形貌之偏度與峰度 2.4 田口實驗方法及變異數分析 第三章 實驗工作 3.1 實驗工作簡介 3.2 實驗材料 3.3 實驗設備 3.3.1 線放電機台 3.3.2 放電迴路與電壓電流波形擷取設備 3.3.3 微量電子天秤 3.3.4 掃描式電子顯微鏡 3.3.5 X光繞射儀 3.3.6 白光干涉儀 3.3.7 微小維克氏硬度計 3.4 實驗設計 3.5 統計與檢定 第四章 實驗結果與討論 4.1 放電加工波形 4.2 材料移除率 4.3 表面粗糙度與形貌 4.4 表面改質 4.5 顯微組織及硬度 4.6 確認測試 (Confirmation test) 第五章 結論 5.1 文獻回顧總結 5.2 研究結果總結 5.2.1. 放電加工波形總結 5.2.2. 材料移除率總結 5.2.3. 表面粗糙度與形貌總結 5.2.4. 表面改質總結 5.2.5. 表面顯微組織及硬度總結 第六章 未來展望 參考文獻

    [1] M.L. Jeswani, Effect of the addition of the addition of graphite power to kerosene used as the dielectric fluid in electrical discharge maching. Wear, 1981. 70(2): p. 133-139.
    [2] Y. Uno, A. Okada and S. Cetin, Surface Modification of EDMed Surface with Powder Mixed Fluid. Design and Production of Dies and Molds, 2001.
    [3] H.K. Kansal, S. Sehijpal and P. Kumar, Effect of Silicon Powder Mixed EDM on Machining Rate of AISI D2 Die Steel. Manufacturing Processes, 2007. 9(1): p.1.
    [4] F.Q. Hu, F.Y. Cao, B.Y. Song, P.J. Hou, Y. Zhang, K. Chen and J.Q. Wei, Surface Properties of SiCp/Al Composite by Powder-Mixed EDM. Procedia CIRP, 2013. 6: p. 101-106.
    [5] H.J. Chen, K.L. Wu and B.H. Yan, Characteristics of Al alloy surface after EDC with sintered Ti electrode and TiN powder additive. The International Journal of Advanced Manufacturing Technology, 2014. 72(1): p. 319-332.
    [6] M.L. Jeswani and S. Basu, Electron microprobe study of deposition and diffusion of tool material in electrical discharge machining. International Journal of Production Research, 1979. 17(1): p. 1-14.
    [7] T. Tani, Y. Fukuzawa, N. Mohri, N. Saito and M. Okada, Machining phenomena in WEDM of insulating ceramics. Journal of Materials Processing Technology, 2004. 149(1-3): p. 124-128.
    [8] N. Mohri, N. Saito, Y. Tsunekawa and N. Kinoshita, Metal Surface Modification by Electrical Discharge Machining with Composite Electrode. CIRP Annals - Manufacturing Technology, 1993. 42(1): p. 219-222.
    [9] K.M. Patel, P.M. Pandey and P. Venkateswara Rao, Surface integrity and material removal mechanisms associated with the EDM of Al2O3 ceramic composite. International Journal of Refractory Metals and Hard Materials, 2009. 27(5): p. 892-899.
    [10] M. Kunieda, M. Yoshida and N. Taniguchi, Electrical Discharge Machining in Gas. CIRP Annals - Manufacturing Technology, 1997. 46(1): p. 143-146.
    [11] C.Y. Bai, C.H. Koo and C.C. Wang, Electrical Discharge Surface Alloying of Superalloy Haynes 230 with Aluminum and Molybdenum. Materials Transactions, 2004. 45(9): p. 2878-2885.
    [12] H.G. Lee, J. Simao, D.K. Aspinwall, R.C. Dewes and W. Voice, Electrical discharge surface alloying. Journal of Materials Processing Technology, 2004. 149(1-3): p. 334-340.
    [13] P.J. Liew, J. Yan and T. Kuriyagawa, Experimental investigation on material migration phenomena in micro-EDM of reaction-bonded silicon carbide. Applied Surface Science, 2013. 276(1): p. 731-743.
    [14] K. Stambekova, H.M. Lin and J.Y. Uan, Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75mass% Si–Fe alloy electrode. Applied Surface Science, 2012. 258(10): p. 4483-4488.
    [15] E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa and H.H. Soliman, Roghness paramerter. Materials processing technology, 2002. 123(1): p. 133-145.
    [16] R.K. Roy, A Primer on the Taguchi Method. Society of Manufacturing Engineers, 1990.
    [17] G. Taguchi and T. Yokoyama, Taguchi methods : design of experiments. Japanese Standards Association, 1993
    [18] M. Datt and D. Singh, Optimization of WEDM Parameters using Taguchi and ANOVA Method. Current Engineering and Technology, 2015. 5(6): p. 3843-3847.

    QR CODE