簡易檢索 / 詳目顯示

研究生: 何瑀璇
Yu-Xuan Ho
論文名稱: 以相圖計算方法預測鈷-鉻-鐵-鎳-鈦高熵合金面心立方形成區域及顯微結構與機械性質之研究
Prediction of the FCC Formation Region of the Co-Cr-Fe-Ni-Ti High-Entropy Alloys by the CALPHAD Method and Study on Microstructure and Mechanical Properties
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 顏怡文
Yee-Wen Yen
吳子嘉
Tzu-Chia Wu
陳志銘
Chih-Ming Chen
梁鍵隴
Chien-Lung Liang
蔡哲瑋
Che-Wei Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 高熵合金相圖計算鈷-鉻-鐵-鎳-鈦合金系統硬度壓縮試驗
外文關鍵詞: Pandat, Co-Cr-Fe-Ni-Ti alloy system, Compression testing
相關次數: 點閱:354下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在加快開發多元素為主的高熵合金,採用相圖計算方法(CALPHAD)搭配高通量技術(High-throughput computation)來模擬鈷-鉻-鐵-鎳-鈦高熵合金在凝固後形成的相結構,並與實驗結合驗證,確認相圖計算方法對高熵合金的可行性及正確性。根據高通量計算,分析了凝固過程中生成FCC單一相的計算結果,本研究把握合金在FCC單相形成區域之顯微結構及機械性質之研究,並希望通過添加少量鈦來提高合金的機械性能,同時觀察鉻含量對合金性能的影響,選擇了三種合金成分比例進行進一步的實驗探究。此外,在高熵合金的研究中,第一原理計算模擬很少與實驗相結合,本實驗針對這一點對合金彈性係數進行模擬實驗。
    高熵合金試片使用電弧熔煉方式製備,並對合金進行1000oC的熱處理後淬冷,進行研磨拋光之金相處理,接著對合金做各性質的分析。本實驗分別以掃描式電子顯微鏡搭配能量散射X射線譜(SEM/EDS)觀察顯微結構,並以X光繞射儀(XRD)鑑定合金晶體結構,檢視模擬計算之正確性。由分析結果得知,合金1至合金3皆為FCC的單相結構,實驗結果與計算結果相符合;維氏硬度測試結果顯示,鉻元素的添加有助於硬度的提升,經熱處理的合金3擁有最大硬度488.1 Hv;合金的壓縮特性方面,從合金的應力-應變曲線可以發現合金1至合金3經壓縮後無發生斷裂,顯示出合金優異之塑性。從彈性係數的數據中可發現當鈷-鉻-鐵-鎳-鈦高熵合金中的鉻含量增加,彈性係數與降伏強度隨之增大,其中具有最高彈性係數的合金3代表對於壓縮應力的回復能力最強,有較佳的剛性。而第一原理計算之彈性係數與實驗結果之彈性係數趨勢相同,添加合金之鉻含量,彈性係數隨之提升。
    本實驗中,成功使用相圖計算方法設計出以FCC相為主的Co30CrxFe25Ni40-xTi5高熵合金,實驗結果和相圖軟體計算的結果相符合,驗證相圖計算方法對高熵合金的模擬之可行性及正確性,並探討出鉻元素的含量對於其合金系統相結構、硬度及壓縮應力等性質造成的影響。


    This study aims to develop multi-element high-entropy alloys more efficiently by combining the CALPHAD method and high-throughput computation. The focus is on simulating the phase structure of Co-Cr-Fe-Ni-Ti high-entropy alloys, and validating the results through experimental analysis. The study investigates the microstructure and mechanical properties of the Co-Cr-Fe-Ni-Ti high-entropy alloys single-phase FCC region, exploring the effects of varying chromium content on alloy performance. Additionally, the study integrates first-principles calculations with experiments to simulate the alloy's elastic modulus.
    The high-entropy alloy samples are prepared using arc melting and subjected to heat treatment at 1000°C. Subsequent metallographic treatment is performed for experimental analysis. Microstructures are observed using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS), and crystal structures are identified using X-ray diffraction (XRD) for validation. The results confirm that alloys 1 to 3 exhibit a single-phase FCC structure, with hardness increasing by adding chromium, where alloy 3 achieves the highest hardness. Compressive tests demonstrate excellent plasticity, and the elastic modulus data reveals an increasing trend with higher chromium content.
    The study successfully designs Co30CrxFe25Ni40-xTi5 high-entropy alloys dominated by the FCC phase using the phase diagram calculation method. Experimental results align with the computed ones, validating the method's feasibility and accuracy. The influence of chromium content on phase structure, hardness, and compressive stress properties of the alloy system is investigated.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 IX 第一章 前言 1 第二章 文獻回顧 3 2.1高熵合金 3 2.1.1高熵合金的設計開端與發展 3 2.1.2 高熵合金 4 2.1.3高熵合金的四大核心效應 6 2.1.3.1高熵效應 6 2.1.3.2嚴重晶格應變效應 8 2.1.3.3遲緩擴散效應 10 2.1.3.4雞尾酒效應 11 2.1.4高熵合金固溶相形成之評估 13 2.2 CALPHAD (CALculation of PHAse Diagram)方法 23 2.2.1 CALPHAD方法於高熵合金上的應用 25 2.2.2 Pandat 軟體 26 2.2.3高通量計算 (High Throughput Calculation) 29 第三章 實驗方法 30 3.1實驗流程 30 3.2高通量計算(High-Throughput Computational (HTC) Method) 31 3.3合金之成分含量 32 3.4合金製備 34 3.5合金之固溶熱處理 35 3.6金相處理 36 3.7掃描式電子顯微鏡及能量散佈光譜儀 36 3.8 X光繞射分析 37 3.9硬度試驗 38 第四章 結果與討論 40 4.1 Co30CrxFe25Ni40-xTi5 (x=5, 10, 15) 高熵合金之相預測及合金篩選 40 4.2第一原理計算預測合金機械性質 42 4.3合金組成與微結構 43 4.3.1合金1之組成及微結構 (Co30Cr5Fe25Ni35Ti5) 43 4.3.2合金2之組成及微結構 (Co30Cr10Fe25Ni30Ti5) 47 4.3.3合金3之組成及微結構(Co30Cr15Fe25Ni25Ti5) 50 4.4合金硬度分析 53 4.5合金的壓縮特性 55 第五章 結論 57 Reference 59

    [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced engineering materials, 6 (2004) 299-303.
    [2] Y.-S. Huang, L. Chen, H.-W. Lui, M.-H. Cai, and J.-W. Yeh, Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0. 5NiFe high-entropy alloy, Materials Science and Engineering: A, 457 (2007) 77-83.
    [3] B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nature communications, 7 (2016) 10602.
    [4] A. Gali and E.P. George, Tensile properties of high-and medium-entropy alloys, Intermetallics, 39 (2013) 74-78.
    [5] S. Praveen, J. Basu, S. Kashyap, and R.S. Kottada, Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures, Journal of Alloys and Compounds, 662 (2016) 361-367.
    [6] M. Lucas, G. Wilks, L. Mauger, J.A. Munoz, O.N. Senkov, E. Michel, J. Horwath, S. Semiatin, M.B. Stone, and D.L. Abernathy, Absence of long-range chemical ordering in equimolar FeCoCrNi, Applied Physics Letters, 100 (2012) 251907.
    [7] T.-T. Shun, L.-Y. Chang, and M.-H. Shiu, Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys, Materials Science and Engineering: A, 556 (2012) 170-174.
    [8] H. Wu, S. Huang, C. Zhu, H. Zhu, and Z. Xie, Influence of Cr content on the microstructure and mechanical properties of CrxFeNiCu high entropy alloys, Progress in Natural Science: Materials International, 30 (2020) 239-245.
    [9] Z. Zhang, C.T. Liu, M.K. Miller, X.-L. Wang, Y. Wen, T. Fujita, A. Hirata, M. Chen, G. Chen, and B.A. Chin, A nanoscale co-precipitation approach for property enhancement of Fe-base alloys, Scientific reports, 3 (2013) 1327.
    [10] B. Cantor, Multicomponent and high entropy alloys, entropy, 16 (2014) 4749-4768.
    [11] D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia, 122 (2017) 448-511.
    [12] K.-H. Cheng, C.-H. Lai, S.-J. Lin, and J.-W. Yeh. Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. in Annales de chimie (Paris. 1914). 2006.
    [13] J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metallurgical and Materials Transactions A, 35 (2004) 2533-2536.
    [14] P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating, Advanced Engineering Materials, 6 (2004) 74-78.
    [15] J.-W. Yeh, Alloy design strategies and future trends in high-entropy alloys, Jom, 65 (2013) 1759-1771.
    [16] M.-H. Tsai and J.-W. Yeh, High-entropy alloys: a critical review, Materials Research Letters, 2 (2014) 107-123.
    [17] J. Dąbrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, and M. Danielewski, Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x= 0; 0.5; 1), Intermetallics, 84 (2017) 52-61.
    [18] W. Zhang, P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater, 61 (2018) 2-22.
    [19] K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys, Acta Materialia, 61 (2013) 4887-4897.
    [20] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia, 61 (2013) 5743-5755.
    [21] A. Roy, P. Sreeramagiri, T. Babuska, B. Krick, P.K. Ray, and G. Balasubramanian, Lattice distortion as an estimator of solid solution strengthening in high-entropy alloys, Materials Characterization, 172 (2021) 110877.
    [22] Q. He and Y. Yang, On lattice distortion in high entropy alloys, Frontiers in Materials, 5 (2018) 42.
    [23] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in materials science, 61 (2014) 1-93.
    [24] B. Cantor, I. Chang, P. Knight, and A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375 (2004) 213-218.
    [25] R.E. Smallman and A. Ngan, Physical metallurgy and advanced materials, Elsevier, 2011.
    [26] B.S. Murty, J.-W. Yeh, S. Ranganathan, and P. Bhattacharjee, High-entropy alloys, Elsevier, 2019.
    [27] A. Takeuchi and A. Inoue, Quantitative evaluation of critical cooling rate for metallic glasses, Materials Science and Engineering: A, 304 (2001) 446-451.
    [28] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Advanced engineering materials, 10 (2008) 534-538.
    [29] S. Guo, Q. Hu, C. Ng, and C. Liu, More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics, 41 (2013) 96-103.
    [30] Y. Jien-Wei, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat, 31 (2006) 633-648.
    [31] H. Sheng, M. Gong, and L. Peng, Microstructural characterization and mechanical properties of an Al0. 5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions, Materials Science and Engineering: A, 567 (2013) 14-20.
    [32] X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics, 132 (2012) 233-238.
    [33] J. Zhu, P. Liaw, and C. Liu, Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys, Materials Science and Engineering: A, 239 (1997) 260-264.
    [34] S. Guo, C. Ng, and C.T. Liu, Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys, Journal of Alloys and Compounds, 557 (2013) 77-81.
    [35] S. Guo, C. Ng, J. Lu, and C. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, Journal of applied physics, 109 (2011) 103505.
    [36] A. Kroupa, Modelling of phase diagrams and thermodynamic properties using Calphad method–Development of thermodynamic databases, Computational Materials Science, 66 (2013) 3-13.
    [37] B. Sundman, H. Lukas, and S. Fries, Computational thermodynamics: the Calphad method, Cambridge university press Cambridge, 2007.
    [38] Y.A. Chang, Phase diagram calculations in teaching, research, and industry, Metallurgical and Materials Transactions A, 37 (2006) 273-305.
    [39] S.-L. Chen, S. Daniel, F. Zhang, Y. Chang, X.-Y. Yan, F.-Y. Xie, R. Schmid-Fetzer, and W. Oates, The PANDAT software package and its applications, Calphad, 26 (2002) 175-188.
    [40] S. Chen, S. Daniel, F. Zhang, Y. Chang, W. Oates, and R. Schmid-Fetzer, On the calculation of multicomponent stable phase diagrams, Journal of phase equilibria, 22 (2001) 373-378.
    [41] C. Wang, Experimental and computational phase studies of the ZrO2-based systems for thermal barrier coatings, (2006)
    [42] R. Raghavan, K.H. Kumar, and B. Murty, Analysis of phase formation in multi-component alloys, Journal of Alloys and Compounds, 544 (2012) 152-158.
    [43] F. Zhang, C. Zhang, S.-L. Chen, J. Zhu, W.-S. Cao, and U.R. Kattner, An understanding of high entropy alloys from phase diagram calculations, Calphad, 45 (2014) 1-10.
    [44] S. Gu, F. Pasqualetti, M. Cieslak, Q.K. Telesford, A.B. Yu, A.E. Kahn, J.D. Medaglia, J.M. Vettel, M.B. Miller, and S.T. Grafton, Controllability of structural brain networks, Nature communications, 6 (2015) 8414.
    [45] A. Durga, K. Hari Kumar, and B. Murty, Phase formation in equiatomic high entropy alloys: CALPHAD approach and experimental studies, Transactions of the Indian Institute of Metals, 65 (2012) 375-380.
    [46] O. Senkov, J. Miller, D. Miracle, and C. Woodward, Accelerated exploration of multi-principal element alloys for structural applications, Calphad, 50 (2015) 32-48.
    [47] C. Zhang, F. Zhang, S. Chen, and W. Cao, Computational thermodynamics aided high-entropy alloy design, Jom, 64 (2012) 839-845.
    [48] M.C. Gao, J.-W. Yeh, P.K. Liaw, and Y. Zhang, High-entropy alloys, Cham: Springer International Publishing, (2016)
    [49] F. He, Z. Wang, Q. Wu, S. Niu, J. Li, J. Wang, and C. Liu, Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system, Scripta Materialia, 131 (2017) 42-46.
    [50] W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y. Chang, R. Schmid-Fetzer, and W. Oates, PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation, Calphad, 33 (2009) 328-342.
    [51] Y.A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid-Fetzer, and W.A. Oates, Phase diagram calculation: past, present and future, Progress in Materials Science, 49 (2004) 313-345.
    [52] C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, and P.K. Liaw, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Materials & Design, 109 (2016) 425-433.
    [53] C. Huang, Y. Zhang, J. Shen, and R. Vilar, Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy, Surface and Coatings Technology, 206 (2011) 1389-1395.
    [54] G.B. Olson, Designing a new material world, Science, 288 (2000) 993-998.
    [55] G. Ceder, Y.-M. Chiang, D. Sadoway, M. Aydinol, Y.-I. Jang, and B. Huang, Identification of cathode materials for lithium batteries guided by first-principles calculations, Nature, 392 (1998) 694-696.
    [56] G.H. Johannesson, T. Bligaard, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, and J.K. Nørskov, Combined electronic structure and evolutionary search approach to materials design, Physical Review Letters, 88 (2002) 255506.
    [57] R. Victora, C. Brucker, T. Hatwar, J. Hurst, B. Uryson, and D. Karns, New high performance magneto-optic media: Tb/Bi/FeCo and Tb/Pb/FeCo superlattices, Journal of applied physics, 81 (1997) 3833-3837.
    [58] S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, and G. Ceder, Predicting crystal structures with data mining of quantum calculations, Physical review letters, 91 (2003) 135503.
    [59] R.M. Martin, Electronic structure: basic theory and practical methods, Cambridge university press, 2020.
    [60] S. Curtarolo, G.L. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, The high-throughput highway to computational materials design, Nature materials, 12 (2013) 191-201.
    [61] W. Setyawan and S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools, Computational materials science, 49 (2010) 299-312.
    [62] J.L. Spivack, J.N. Cawse, D.W. Whisenhunt Jr, B.F. Johnson, K.V. Shalyaev, J. Male, E.J. Pressman, J.Y. Ofori, G.L. Soloveichik, and B.P. Patel, Combinatorial discovery of metal co-catalysts for the carbonylation of phenol, Applied Catalysis A: General, 254 (2003) 5-25.
    [63] S. Wang, Z. Wang, W. Setyawan, N. Mingo, and S. Curtarolo, Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations, Physical Review X, 1 (2011) 021012.
    [64] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L. Hart, S. Sanvito, and M. Buongiorno-Nardelli, AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations, Computational Materials Science, 58 (2012) 227-235.
    [65] H. Koinuma and I. Takeuchi, Combinatorial solid-state chemistry of inorganic materials, Nature materials, 3 (2004) 429-438.
    [66] D. Morgan, G. Ceder, and S. Curtarolo, High-throughput and data mining with ab initio methods, Measurement Science and Technology, 16 (2004) 296.
    [67] F. He, Z. Wang, S. Niu, Q. Wu, J. Li, J. Wang, C. Liu, and Y. Dang, Strengthening the CoCrFeNiNb0. 25 high entropy alloy by FCC precipitate, Journal of Alloys and Compounds, 667 (2016) 53-57.
    [68] J. He, H. Wang, H. Huang, X. Xu, M. Chen, Y. Wu, X. Liu, T. Nieh, K. An, and Z. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Materialia, 102 (2016) 187-196.
    [69] X. Jiang, J. Zhao, and X. Jiang, Correlation between hardness and elastic moduli of the covalent crystals, Computational materials science, 50 (2011) 2287-2290.
    [70] G.V. Samsonov, Handbook of the Physicochemical Properties of the Elements, Springer Science & Business Media, 2012.
    [71] T. Yang, Y. Zhao, Y. Tong, Z. Jiao, J. Wei, J. Cai, X. Han, D. Chen, A. Hu, and J. Kai, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 362 (2018) 933-937.

    QR CODE