簡易檢索 / 詳目顯示

研究生: 林鈞偉
Chun-Wei Lin
論文名稱: 以面銑刀具加工螺旋傘齒輪之切削模擬
CUTTING SIMULATION FOR SPIRAL BEVEL GEARS USING A FACE-MILLING CUTTER
指導教授: 石伊蓓
Yi-pei Shih
口試委員: 尤春風
Chun-fong You
李維楨
Wei-chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 94
中文關鍵詞: 螺旋傘齒輪面銑式切製法五軸工具機齒面誤差分析體積移除率切削模擬體素法移動立方體演算法
外文關鍵詞: spiral bevel gears, face-milling cutting method, five-axis CNC machine, tooth surface deviation analysis, material removal rate, cutting simulation, voxel method, marching cube algorithm.
相關次數: 點閱:352下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以面銑式切製法(Face-milling cutting system)為製造螺旋傘齒輪的主要加工方式,其刀具分為多刀刃所組成之面銑刀型與砂輪型,分別用於切齒和磨齒加工,而多刀刃刀具設計較為複雜,所以目前切削模擬大都使用砂輪作為切削模擬刀具。此切製法必須使用五軸工具機加工,由於加工時運動複雜,為了避免發生撞機意外,須預先模擬切削路徑來驗證NC加工路徑的正確性。基於上述兩點,本論文開發出一套以面銑刀具加工螺旋傘齒輪之切削模擬軟體,來模擬齒輪加工,且提出不同於以往的多刀刃型銑刀切削模擬方法,不再僅限於使用砂輪刀具模擬。
    模擬切削的演算核心是使用體素法(Voxel),首先將齒胚實體模型用適應性體素建立,並產生多刀刃型銑刀的曲面數學模式。上述兩者建立完成後,將NC碼五軸位置,帶入刀具至工件座標系統之座標轉換矩陣,可得出在工件座標系統下觀察的刀具位置。以方向性邊界盒(Oriented bounding box)包圍之齒胚與各個刀刃來做碰撞干涉檢查,達到多刀刃切削效果。並使用移動立方體(Marching Cube)演算法來優化齒面顯示精度,將切削結果以STL格式儲存。最後比較切削齒面與理論齒面之法向量誤差,驗證模擬切削數學模式的正確性,同時也計算出單位時間之體積移除率,以做為後續NC路徑規劃最佳化的參考。


    Face milling is a mainstream mass production method for spiral bevel gears. Two types of tools were adopted in face milling method, including a milling cutter and a wheel. Because of difficulty in building a mathematical model of a milling cutter, the commercialized cutting simulation softwares apply an axisymmetric wheel instead of a milling cutter. This cutting method must be applied on a five-axis machine, however, five-axis movement is quite complex in processing. In order to remove the NC errors and avoid the collision between the cutting tool and machine axes or fixtures. A cutting simulation is required to verify the correctness of NC tool paths before cutting. To address the above issues, this study aims to develop a dedicated cutting simulation software for spiral bevel gears using a face-milling cutter.
    A voxel-based method is adopted as a calculation core for the presented cutting simulation. The solid model of work gear is constructed using adaptive voxels, and the mathematical models of cutting blade surfaces are established. According to NC codes, the cutter positon relative to the workpiece is then determined use coordinate transformation matrix from the cutter coordinate system to the workpiece coordinate system. First, an interference detection between each cutting blade and the workpiece is made using oriented bounding box method. After limiting search scope for possible collision voxels, all vertices of candidate voxels are checked whether they are inside or outside the blade to implement cutting simulation. In order to improve the display resolution of produced tooth surface, the marching cube algorithm is adopted. Tooth surfaces of bevel gear are save as STL format for further investigation. Finally, an evaluation method for tooth surfaces deviations is applied to verify the correctness of the cutting simulation. And the material removal rate is examined for further NC programming optimization.

    指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 誌 謝 VI 目 錄 VII 符號定義 IX 圖索引 XI 表索引 XIII 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 2 1.3.1齒胚與刀具設計 3 1.3.2 NC路經規劃 3 1.3.3 NC碼轉譯器 3 1.3.4切削模擬方法 3 1.4 研究目的 5 1.5 論文架構 5 第 2 章 面銑式螺旋傘齒輪切齒運動數學模式 7 2.1前言 7 2.2面銑式刀具建立 7 2.2.1面銑式刀具數學模式 7 2.2.2 內外刀刃3D模型 9 2.3面銑式切製法五軸工具機的機械設定推導 12 2.4以體素建立工件齒胚實體資料 17 2.4.1體素說明 17 2.4.2 建立工件齒胚 17 2.5 NC加工路徑規劃 20 2.6 NC加工路徑模擬 20 2.7數值範例 20 2.8小結 25 第 3 章 切削模擬方法 27 3.1前言 27 3.2切削模擬流程 27 3.3方向性邊界盒(OBB)快速干涉檢查 28 3.4刀具刀刃方向性邊界盒與齒胚體素頂點干涉檢查 33 3.5找出位於刀刃內部的體素頂點 35 3.6體素干涉類型計算 38 3.7部份干涉體素之細化計算(Marching Cubes) 38 3.8 利用建立之STL三角面齒面做誤差分析 45 3.9面銑式刀具每一進給切削體積移除率計算 46 3.10數值範例 47 3.11小結 53 第 4 章 面銑式螺旋傘齒輪切削模擬結果 54 4.1 前言 54 4.2面銑式螺旋傘齒輪切削模擬軟體 54 4.2.1齒胚實體資料 54 4.2.2刀具模型 55 4.2.3切削模擬 56 4.2.4齒面誤差分析 57 4.3不同參數設定齒面誤差比較 58 4.4小結 65 第 5 章 結論與建議 67 5.1結果與討論 67 5.2建議與未來展望 68 參考文獻 69 附錄 A. 小齒輪加工NC碼 71 附錄 B. 大齒輪加工NC碼 75

    [1] ANSI/AGMA ISO 23509-A08, Bevel and Hypoid Gear Geometry, Alexandria, VA, USA (2008).
    [2] F. L. Litvin and Y. Gutman, “Methods of Synthesis and Analysis for Hypoid Gear-Drives of ‘Format’ and ‘Helixform’, Part 1, 2 and 3”, ASME J. Mech. Des., Vol. 103, Issue. 1, pp. 83-110, 1981.
    [3] F. L. Litvin, Y. Zhang, M. Lundy and C. Heine, “Determination of Settings of a Tilted Head Cutter for Generation of Hypoid and Spiral Bevel Gears”, ASME J. Mech. Transm. Autom. Des. , Vol. 110, issue. 4, pp. 495-500, 1988.
    [4] Gleason Works, Calculation Instructions — Generated Spiral Bevel Gears, Duplex–Helical Method, Including Grinding, Rochester, NY, USA (1971).
    [5] Z. H. Fong, “Mathematical Model of Universal Hypoid Generator with Supplemental Kinematic Flank Correction Motion,” ASME J. Mech. Des., Vol. 103, Issue. 1, pp. 136-142, 2000.
    [6] Y. P. Shih and Z. H. Fong, “Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Gear Generator”, ASME J. Mech. Des., Vol. 130, Issue. 6, No. 062604, 2008.
    [7] Alfred V. Aho,編譯系統設計,碁峰資訊,2006。
    [8] 林秉毅,車銑複合五軸工具機之 PC-based CNC 即時系統設計與實現,國立成功大學碩士論文,2003。
    [9] 吳稚逸,基於STEP-NC之五軸曲面加工,國立清華大學碩士論文,2004。
    [10] 董學朱,擺線齒錐齒輪及準雙曲面齒輪設計和製造,機械工業出版社,北京,2002。
    [11] 張欽宇,五軸CNC成形砂輪模齒機NC路徑模擬與碰撞檢測,國立台灣科技大學碩士論文,2011。
    [12] S. Gottschalk, M. C. Lin and D. Manocha, “OBBTree: A Hierarchical Structure for Rapid Interference Detection,” ACM Proce. SIGGRAPH, pp. 171-180, NY, USA, 1996.
    [13] D. Eberly, Dynamic Collision Detection using Oriented Bounding Boxes, Geometric Tool, 1999.
    [14] C.K. Chan, S.T. Tan, “Determination of the Minimum Bounding Box of an Arbitrary Solid: an Iterative Approach, Computers and Structures”, pp. 393-398, 2004.
    [15] P. Smid, FANUC CNC Custom Macros: Programming Resources for FANUC Custom Macro B Users,Industrial Press Inc., 2005.
    [16] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm”, ACM Proce. SIGGRAPH, Vol. 21, Issue 4, pp. 163-169, NY, USA, 1987.
    [17] 莊皓翔,基於體素法之面銑式螺旋傘齒輪切削模擬,國立台灣科技大學碩士論文,2014。
    [18] 顏楷倫,模造螺旋傘齒輪設計,國立台灣科技大學碩士論文,2013。
    [19] Please refer to Gleason Website (http://www.gleason.com/)
    [20] 蘇宏旻,面滾式直傘齒輪SoildWorkAPI切削模擬,國立台灣科技大學碩士論文,2013。
    [21] 郭哲甫,利用SolidWorks API進行戟齒輪加工機切削模擬方法研究,國立中正大學碩士論文,2013。
    [22] 林冠亨,泛用型齒輪加工機切削模擬方法研究,國立中正大學碩士論文,2011。
    [23] 楊雲鈞,五軸工具機實體切削模擬,國立台灣大學碩士論文,2008。
    [24] 張亮傑,應用掃掠曲面與STL網格干涉模擬五軸切削,國立中正大學碩士論文,2006。
    [25] A. GuCziec and R. Humel, “Exploiting Triangulated Surface Extraction using Tetrahedral Decomposition”, IEEE, Vol. 1, pp. 328-342, 1995.

    QR CODE