簡易檢索 / 詳目顯示

研究生: 龐永承
Wing-Shing Pong
論文名稱: 串接式彈性致動器之扭力控制研究
Study on Torque Control of a Series Elastic Actuator
指導教授: 郭永麟
Yong-Lin Kuo
口試委員: 徐勝均
Sheng-Dong Xu
楊振雄
Cheng-Hsiung Yang
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 96
中文關鍵詞: 串接式彈性制動器PD 控制滑動模式控制扭力控制
外文關鍵詞: series elastic actuator, proportional-derivative control, sliding mode control, torque control
相關次數: 點閱:844下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著科技的進步的影響下,由機器人、手臂取代人力已是全球的趨勢,並隨著醫學的進步使得人口高龄化,因此更加需要有完善的復健和輔助的裝置,它必須能提供人與機器之間更安全地互動,使得使用者能以所需之方式做運動或復健,為了實現這點就必須做到既精確且穩定的扭力控制,而近年來發現串接式彈性致動器(Series Elastic Actuators, SEAs)非常適合用於開發復健和輔助的裝置,它的結構不同於傳統致動器,在致動器與負載之間串接一個彈性元件,降低致動器結構的剛性、系統的頻寬,因彈性元件具有將負載所受之扭力轉成彈性元件的變形量再乘上彈性係數的特性,因此將扭力控制問題轉換成角度控制問題,所以可套用已發展十分成熟的角度控制的理論,從而能夠實現高精確度、穩定度的扭力控制。

      藉由此次的研究,對串接式彈性致動器做全面的探討,一開始先使用系統識別找出馬達的模型及彈簧在動態及穩態的特性方程式的型式,並利用最小平方法來找出特性方程式的參數,接著藉由馬達模型與彈簧特性方程式推導出串接式彈性致動器的數學模型,再藉此數學模型設計出負迴授控制系統以及控制器(Proportional-Derivative Controller和Sliding Mode Controller)來實現收斂快且穩定的扭力控制,最後藉由各種不同組合的實驗,比較不同控制器的性能,並藉此找到能收斂快且穩定之扭力控制的最佳方法。


    With the progress of technology, many jobs have been replaced by machines. Besides, with the medical progress makes the population aging, so people might keep their health by using appropriate rehabilitation or assistive devices, which need to have safer interactions with human, and then users can do rehabilitation exercises according to their demands. Therefore, the devices must be able to achieve both accurate and stable torque control in order to satisfy users’ demands. In recent years, it has been found that series elastic actuators (SEAs) are well suited for the development of rehabilitation or assistive devices, because its structure is different from the structure of the traditional actuator. It reduces the rigidity of the structure of the actuator and bandwidth of the system by using an elastic unit to connect the actuator and load in series. However, the elastic unit can convert the torque from the load into the deformation amount of the elastic unit multiplied by the elastic coefficient, so a torque control problem can be converted into an angle control problem, which can be easily solved by using any position control theory, and high-accuracy torque control can be achieved.

    This study provides a comprehensive study on SEAs. First, the dynamic models of a motor and a spring are determined by applying system identification and the least-squares estimation. Secondly, the equation of an SEA is derived by integrating both the models of a motor and a spring. Thirdly, a negative feedback control system based on the SEA model is developed, where the high-accuracy position and torque control are achieved by designing a proportional-derivative (PD) controller and a sliding mode controller. Finally, some conclusions regarding to high-accuracy position and torque control are obtained by performing the simulation and experiments based on the two types of controllers.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xi 第1章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究目的與動機 4 1.4 論文架構 5 第2章 串接式彈性致動器之控制 6 2.1 串接式彈性致動器之數學模型 6 2.2 角度控制 8 2.3 扭力控制 9 第3章 模型識別 11 3.1 簡介 11 3.1.1 最小平方法估計量 11 3.2 馬達模型 12 3.2.1 連續型 13 3.2.2 離散型 15 3.3 彈簧模型 21 第4章 控制器設計 25 4.1 PD控制器 25 4.1.1 連續型 26 4.1.2 離散型 27 4.2 滑動模式控制器 28 4.2.1 切換控制項 32 4.2.2 等效控制項 35 4.2.3 穩定性分析 41 第5章 實驗設備與架構 46 5.1 實驗設備 46 5.1.1 硬體架構說明 46 5.1.2 串接式彈性致動器實驗平台 46 5.1.3 控制器規格 47 5.1.4 馬達規格 51 5.1.5 扭力計規格 52 5.1.6 煞車規格 53 5.1.7 編碼器規格 53 5.1.8 硬體流程說明 55 5.2 實驗架構 56 第6章 實驗結果與討論 57 6.1 角度控制 57 6.1.1 追蹤固定目標 57 6.1.2 追蹤軌跡 71 6.1.3 控制器比較 78 6.2 扭力控制 80 6.2.1 追蹤穩態目標 80 6.2.2 追蹤動態目標 85 6.2.3 討論 90 第7章 結論以及未來展望 91 7.1 結論 91 7.2 未來展望 92 參考文獻 94

    [1] Pratt, Gill A; Williamson, Matthew M. Series elastic actuators. In: Intelligent Robots and Systems 95. Human Robot Interaction and Cooperative Robots, Proceedings, 1995 IEEE/RSJ International Conference on. IEEE, 1995. p. 399-406.
    [2] Ekkelenkamp, R; Veneman, J; van der Kooij, H. Lopes: Selective Control of Gait Functions During the Gait Rehabilitation of CVA Patients. In: 9th International Conference on Rehabilitation Robotics, 2005, p. 361-364.
    [3] Herr, H.M; Grabowski, A.M. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation. Proceedings of the Royal Society B: Biological Sciences, 2012, p. 457–464.
    [4] Lens, T; Kunz, J; Stryk, O.V.; Trommer, C; Karguth, A. Biorob-arm: A quickly deployable and intrinsically safe, light-weight robot arm for service robotics applications. In Proceedings of the 41st International Symposium on Robotics, Munich, Germany, 2010; p. 905–910.
    [5] Hogan, N. Impedance Control: An Approach to Manipulation: Part I, II, III. Journal of dynamic systems, measurement and control, 1985, p. 1–24.
    [6] Duschau-Wicke, A; von Zitzewitz, J; Caprez, A; Lunenburger, L; Riener, R. Path control: A method for patient-cooperative robot-aided gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, p. 38–48.
    [7] Pratt, J; Chew, C.M; Torres, A; Dilworth, P; Pratt, G. Virtual model control: An intuitive approach for bipedal locomotion. The International Journal of Robotics Research, 2001, p. 129–143.
    [8] Ragonesi, D; Agrawal, S; Sample, W; Rahman, T. Series elastic actuator control of a powered exoskeleton. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2011, p. 3515-3518.
    [9] Vallery, H; Ekkelenkamp, R; Van Der Kooij, H; Buss, M. Passive and accurate torque control of series elastic actuators. In Intelligent Robots and Systems, 2007, IEEE, p. 3534-3538.
    [10] Bonabi, H; Ahmadabadi, M; Bahrami, F. Distributed series elastic actuator: Analysis and simulations. In: Control, Automation and Systems, 2012, 12th International Conference on. IEEE, 2012, p. 1949-1954.
    [11] Calanca, A; Capisani, L; Fiorini, P. Robust force control of series elastic actuators. In: Actuators. Multidisciplinary Digital Publishing Institute, 2014, p. 182-204.
    [12] Taylor, M. D. A compact series elastic actuator for bipedal robots with human-like dynamic performance. Robotics Institute-Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, 2011.
    [13] K.J. Keesman. System Identification: an Introduction. Springer-Verlag London Limited, London, 2011.
    [14] Ghaedi, M; Ghaedi, A. M; Hossainpour, M; Ansari, A; Habibi, M. H; Asghari, A. R. Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon: Kinetic and isotherm study. Journal of Industrial and Engineering Chemistry, 2014, p. 1641-1649.
    [15] 林子鑌,“應用 PID 控制、模糊邏輯控制和模型預測控制實現RRR 平面並聯式機構之定位控制”,國立臺灣科技大學,碩士論文, 2013年.
    [16] M. Sami Fadali; Antonio Visioli. Digital Control Engineering: Analysis and Design, Second Edition, Academic Press, 2012, p. 57-63, 181-190.
    [17] Qingsong, Xu. Enhanced discrete-time sliding mode strategy with application to piezoelectric actuator control. IET Control Theory & Applications, 2013, p. 2153-2163.
    [18] Farid Golnaraghi; Benjamin C. Kuo. Automatic Control Systems, 9th Edition, WILEY, 2009, p. 283-288, 492-511, 617-625.
    [19] J.G. Ziegler; N.B. Nichols. Optimum settings for automatic controllers. Transactions of the American Society of Mechanical Engineers, Vol. 64, 1942, p. 759-768.
    [20] U. Itkis. Control System of Variable Structure. Halsted Press, 1976.
    [21] V. I. Utkin. Sliding Modes and Their Application in Variable Structure Systems. MIR Publishers, 1978.
    [22] Bae, J; Kong, K; Tomizuka, M. Gait phase-based smoothed sliding mode control for a rotary series elastic actuator installed on the knee joint. In: Proceedings of the 2010 American Control Conference, IEEE, 2010, p. 6030-6035.
    [23] Wang, M; Sun, L; Yin, W; Dong, S; Liu, J. A novel sliding mode control for series elastic actuator torque tracking with an extended disturbance observer. In: 2015 IEEE International Conference on Robotics and Biomimetics, IEEE, 2015, p. 2407-2412.
    [24] Sulaiman, M; Patakor, F. A; Ibrahim, Z. New methodology for chattering suppression of sliding mode control for three-phase induction motor drives. WSEAS Transactions on Systems and Control, 2014, p. 1-9.
    [25] Kuo, T. C; Huang, Y. J; Chang, S. H. Sliding mode control with self-tuning law for uncertain nonlinear systems. ISA transactions, 47.2, 2008, p. 171-178.
    [26] Li, Y; Xu, Q. Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator. IEEE Transactions on Control Systems Technology, 18.4, 2010, p. 798-810.
    [27] Mohammad, A; Ehsan, S. S. Sliding mode PID-controller design for robot manipulators by using fuzzy tuning approach. In Control Conference, 2008, CCC 2008, 27th Chinese, IEEE, 2008, p. 170-174.
    [28] Dos, Santos, W. M; Caurin, Glauco, A. P; Siqueira, Adriano, A. G. Design and control of an active knee orthosis driven by a rotary Series Elastic Actuator. Control Engineering Practice, 2015.
    [29] Chen, G; Qi, P; Guo, Z; Yu, H. Mechanical design and evaluation of a compact portable knee–ankle–foot robot for gait rehabilitation. Mechanism and Machine Theory, 2016, p. 51-64.
    [30] Jo, I; Bae, J. Design and control of a wearable and force-controllable hand exoskeleton system. Mechatronics, 41, 2017, p.90-101.

    無法下載圖示 全文公開日期 2022/08/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE