簡易檢索 / 詳目顯示

研究生: 胡薰方
SHIUN-FANG HU
論文名稱: CuMP2S6 (M=In,Cr)層狀化合物之晶體成長與特性研究
Crystal growth and characterization of CuInP2S6 and CuCrP2S6
指導教授: 趙良君
Liang-Chiun Chao
何清華
Ching-Hwa Ho
口試委員: 趙良君
Liang-Chiun Chao
何清華
Ching-Hwa Ho
陳俊維
Chun-Wei Chen
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: 化學氣相傳導法
外文關鍵詞: chemical vapor transport (CVT) method
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文化學氣相傳導法(CVT)成長CuMP2S6 (M=In ,Cr)系列之含磷硫屬化合物晶體,此系列晶體材料能隙涵蓋甚廣,可從紫外光至紅外光,因此現今有許多研究學者對此系列材料極為有興趣並加以研究與探討,期許在此系列較新穎的材料中能有突破性的發展與應用。
    本論文並對此系列晶體進行元素成分分析、晶體結構分析、光學量測其特性加以研究以及討論。藉由能量散佈光譜儀確定成長的材料之元素比與預期成分相同,確保我們成長出的晶體品質以及量測實驗分析的可信度。經由X射線晶格繞射分析儀分析CuInP2S6與CuCrP2S6之結構維持於單斜結構,並藉由布拉格公式及單斜結構公式計算出兩種材料的晶格常數,CuInP2S6的晶格常數a=6.081Å、b=10.557Å、c=13.600Å、β=107.101°,CuCrP2S6的晶格常數a=6 .000Å、b=10.234 Å、c= 13.402 Å、β=106.705°。以固態雷射633nm紅光與532nm綠光雷射為激發源量測拉曼散射光譜可觀察到P-S、P-P、S-P-S與S-P-P四種內部震動模態。隨著溫度的下降,使用雷射633nm紅光,拉曼峰值往高波數位移,尤其是CuCrP2S6晶體在低溫下的拉曼譜線,除了內部震動模態強度增加,且可以觀察到室溫下所沒有的新震動模態。
      光學量測實驗中,藉由光穿透實驗與調制光譜實驗,可得知兩種材料的激子躍遷訊號位置其能隙。CuInP2S6的室溫躍遷訊號在 2.7 eV,當溫度下降至約100K,可觀察到第二激子的出現,並計算出第一激子之游離能40 meV,且在低溫30K時直接能隙Eg=3.007eV;CuCrP2S6的室溫躍遷訊號在1.26 eV,在低溫30K時移至1.34 eV。
    在光穿透實驗中,CuCrP2S6 的吸收光範圍落在紅外線區,而CuInP2S6 的吸收光範圍落在可見光區。最後在熱探針實驗中,我們可以得知CuInP2S6與CuCrP2S6皆為P-type半導體。
      綜合以上幾點可得知,CuInP2S6與CuCrP2S6晶體雖有相同的晶體結構,激子躍遷位置、光吸收範圍及拉曼光譜卻大為不同,本研究提出此兩種材料之基礎與光學研究,得以提供未來科技之應用上有突破性的發展。


    The layered crystals of CuMP2S6 (M=In, Cr) phosphorus-containing complex chalcogenides series were grown by chemical vapor transport (CVT) method, using I2 as a transport agent. This series of crystal materials include a wide range of energy gap, from ultraviolet light to infrared light. Therefore, many researchers are very interested in this series of materials and research and discuss it. Detailed characterization of the materials were carried out by using Energy-dispersive X-ray spectroscopy (EDS), X-ray Diffraction (XRD), Raman spectroscopy, Thermoreflectance (TR), Piezo-modulation reflectance (PzR), Transmittance (Tr), and Hot probe experiments.
      X-ray analysis confirmed that CuInP2S6 and CuCrP2S6 are crystallized in monoclinic structure, Using Bragg's Law and monoclinic formula to calculate the lattice constant, lattice constant of CuInP2S6 are a=6.081Å, b=10.557 Å, c=13.600 Å,β=107.101°, for CuCrP2S6 are a=6.000 Å, b=10.234 Å, c=13.402 Å, β=106.705°. For Raman experiment, we can observe a lot of internal vibrations that may be divided into four groups, which will be referred to be the P-S, P-P, S-P-S, and S-P-P modes. As the temperature decreases, the Raman peak shift to high wavenumber, and the Raman intensity of the CuInP2S6 and CuCrP2S6 at low temperature increases.
      Optical properties of CuInP2S6 and CuCrP2S6 were characterized using thermoreflectance (TR), piezo-modulation reflectance (PzR), transmittance measurement (Tr), which showed that CuInP2S6 and CuCrP2S6 are direct semiconductor. The band gaps of CuInP2S6 and CuCrP2S6 are 2.7 eV and 1.26 eV at 300 K, and the light absorption range are in the visible to infrared region. For CuInP2S6, in modulation spectroscopy experiment, as the temperature decreases, the binding energy of the first exciton can be calculated to be 40 meV, and the direct energy gap Eg=3.007eV at 30K. From hot probe measurement, CuInP2S6 and CuCrP2S6 are classified as P-type materials.
     Based on above experimental results, CuInP2S6 and CuCrP2S6 crystals have the same crystal structure, but their energy gap, absorption range and Raman spectrum are quite different. This work provides fundamental basis and optical studies of these two materials for development and application of future technology.

    目錄 中文摘要 I Abstract III 致謝 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 第二章 晶體成長 4 2.1 晶體成長方法 4 2.2 單晶成長的系統配置 6  2.2.1高真空系統 7  2.2.2 長晶反應系統 9 2.3 長晶程序 11  2.3.1 元素比例及石英管清洗過程 11  2.3.2 單晶化合及成長 12 第三章 實驗原理與量測技術 15 3.1 掃描式電子顯微鏡 (SEM) 16 3.2 能量散佈能譜儀 (EDS) 19 3.3 X-ray晶格繞射分析儀 (XRD) 21 3.4 X射線光電子能譜 (XPS) 24 3.5 拉曼繞射系統 (Raman) 26 3.6 熱調制反射光譜 (TR) 30 3.7 壓電調制反射光譜 (PzR) 37 3.8 光穿透光譜 (Photo Transmittance) 40 3.9 熱探針實驗 (Hot Probe) 43 第四章 實驗結果與討論 44 4.1 能量散佈儀之晶格材料結構 44 4.2 X-ray 晶格繞射實驗分析 47 4.3 X射線光電子能譜 (XPS) 52 4.4 拉曼散射光譜 59 4.5 熱調制反射光譜分析 66 4.6 壓電調制反射光譜分析 72 4.7 光穿透光譜 75 4.8 熱探針量測 85 第五章 結論 87 參考文獻 89

    [1] F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, and H. He, “Room-temperature ferroelectricity in CuInP 2S6 ultrathin flakes,” Nature communications, vol. 7, pp. 12357, 2016.
    [2] Y. Vysochanskii, “Ferroelectricity in complex chalcogenides M'M'' P2X6 (M', M''-Sn, Pb, Cu, In, Cr; X-S, Se),” Ferroelectrics, vol. 218, no. 1, pp. 275-282, 1998.
    [3] A. Dziaugys, J. Banys, V. Samulionis, J. Macutkevic, Y. Vysochanskii, V. Shvartsman, and W. Kleemann, "Phase transitions in layered semiconductor-ferroelectrics," Ferroelectrics-Characterization and Modeling: IntechOpen, 2011.
    [4] V. Maisonneuve, J. M. Reau, M. Dong, V. B. Cajipe, C. Payen, and J. Ravez, “Ionic conductivity in ferroic CuInP2S6 and CuCrP2S6,” Ferroelectrics, vol. 196, no. 1-4, pp. 577-580, 1997.
    [5] A. Dziaugys, V. Shvartsman, J. Macutkevic, J. Banys, Y. Vysochanskii, and W. Kleemann, “Phase diagram of mixed Cu(In x Cr 1− x) P2S6 crystals,” Physical Review B, vol. 85, no. 13, pp. 134105, 2012.
    [6] F. M. Wang, T. A. Shifa, P. Yu, P. He, Y. Liu, F. Wang, Z. X. Wang, X. Y. Zhan, X. D. Lou, F. Xia, and J. He, “New Frontiers on van der Waals Layered Metal Phosphorous Trichalcogenides,” Advanced Functional Materials, vol. 28, no. 37, pp. 1802151, 2018.
    [7] Y. Lai, Z. Song, Y. Wan, M. Xue, C. Wang, Y. Ye, L. Dai, Z. Zhang, W. Yang, and H. Du, “Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6,” Nanoscale, vol. 11, no. 12, pp. 5163-5170, 2019.
    [8] H. Schäfer, Chemical transport reactions: Elsevier, 2016.
    [9] A. Beiser, Concepts of modern physics: Tata McGraw-Hill Education, 2003.
    [10] F. H. Pollak, and H. Shen, “Modulation Spectroscopy of Semiconductors - Bulk Thin-Film, Microstructures, Surfaces Interfaces and Devices,” Materials Science & Engineering R-Reports, vol. 10, no. 7-8, pp. 275-374, 1993.

    [11] H. Mathieu, J. Allegre, and B. Gil, “Piezomodulation spectroscopy: A powerful investigation tool of heterostructures,” Phys Rev B Condens Matter, vol. 43, no. 3, pp. 2218-2227, 1991.
    [12] C.-H. Ho, H.-W. Lee, and Z.-H. Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors,” Review of scientific instruments, vol. 75, no. 4, pp. 1098-1102, 2004.
    [13] D. Errandonea, D. Martinez-Garcia, A. Segura, J. Haines, E. Machado-Charry, E. Canadell, J. C. Chervin, and A. Chevy, “High-pressure electronic structure and phase transitions in monoclinic InSe: X-ray diffraction, Raman spectroscopy, and density functional theory,” Physical Review B, vol. 77, no. 4, pp. 045208, 2008.
    [14] J. I. Pankove, Optical processes in semiconductors: Courier Corporation, 1975.
    [15] A. Axelevitch, and G. Golan, “Hot-probe method for evaluation of majority charged carriers concentration in semiconductor thin films,” Facta universitatis-series: Electronics and Energetics, vol. 26, no. 3, pp. 187-195, 2013.
    [16] V. Maisonneuve, M. Evain, C. Payen, V. Cajipe, and P. Molinie, “Room-temperature crystal structure of the layered phase CuInP2S6,” Journal of alloys and compounds, vol. 218, no. 2, pp. 157-164, 1995.
    [17] Y. M. Vysochanskii, V. Stephanovich, A. Molnar, V. Cajipe, and X. Bourdon, “Raman spectroscopy study of the ferrielectric-paraelectric transition in layered CuInP2S6,” Physical Review B, vol. 58, no. 14, pp. 9119, 1998.
    [18] A. Grzechnik, V. Cajipe, C. Payen, and P. McMillan, “Pressure-induced phase transition in ferrielectric CuInP2S6,” Solid state communications, vol. 108, no. 1, pp. 43-47, 1998.
    [19] M. Si, P. Y. Liao, G. Qiu, Y. Duan, and P. D. Ye, “Ferroelectric Field-Effect Transistors Based on MoS2 and CuInP2S6 Two-Dimensional van der Waals Heterostructure,” ACS Nano, vol. 12, no. 7, pp. 6700-6705, 2018.
    [20] C. H. Ho, and S. L. Lin, “Optical properties of the interband transitions of layered gallium sulfide,” Journal of Applied Physics, vol. 100, no. 8, pp. 083508, 2006.
    [21] Y. Lai, Z. Song, Y. Wan, M. Xue, Y. Ye, L. Dai, W. Yang, and H. Du, “Discovery of Two-Dimensional Multiferroicity in van der Waals CuCrP2S6 Layers,” arXiv preprint arXiv:1805.04280, 2018.

    [22] M. Chyasnavichyus, M. A. Susner, A. V. Ievlev, E. A. Eliseev, S. V. Kalinin, N. Balke, A. N. Morozovska, M. A. McGuire, and P. Maksymovych, “Size-effect in layered ferrielectric CuInP2S6,” Applied Physics Letters, vol. 109, no. 17, pp. 172901, 2016.
    [23] I. P. Studenyak, V. V. Mitrovcij, G. S. Kovacs, M. I. Gurzan, O. A. Mykajlo, Y. M. Vysochanskii, and V. B. Cajipe, “Disordering effect on optical absorption processes in CuInP2S6 layered ferrielectrics,” Physica Status Solidi B-Basic Research, vol. 236, no. 3, pp. 678-686, 2003.
    [24] I. P. Studenyak, O. A. Mykajlo, V. O. Stephanovich, M. I. Gurzan, Y. M. Vysochanskii, and V. B. Cajipe, “Phase transitions and optical absorption edge in CuInP2Se6 layered ferrielectrics,” Physica Status Solidi a-Applied Research, vol. 198, no. 2, pp. 487-494, 2003.
    [25] M. A. Susner, M. Chyasnavichyus, M. A. McGuire, P. Ganesh, and P. Maksymovych, “Metal Thio‐and Selenophosphates as Multifunctional van der Waals Layered Materials,” Advanced Materials, vol. 29, no. 38, pp. 1602852, 2017.
    [26] V. Cajipea, J. Ravez, V. Maisonneuve, A. Simon, C. Payen, R. Von Der Muhll, and J. Fischer, “Copper ordering in lamellar CuMP2S6 (M= Cr, In): Transition to an antiferroelectric or ferroelectric phase,” Ferroelectrics, vol. 185, no. 1, pp. 135-138, 1996.
    [27] L. Niu, F. C. Liu, Q. S. Zeng, X. Y. Zhu, Y. L. Wang, P. Yu, J. Shi, J. H. Lin, J. D. Zhou, Q. D. Fu, W. Zhou, T. Yu, X. F. Liu, and Z. Liu, “Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes,” Nano Energy, vol. 58, pp. 596-603, 2019.
    [28] X. Bourdon, and V. Cajipe, “Soft-Chemistry Forms of Sn2P2S6 and CuInP2S6,” Journal of Solid State Chemistry, vol. 141, no. 1, pp. 290-293, 1998.
    [29] T. V. Misuryaev, T. V. Murzina, O. A. Aktsipetrov, N. E. Sherstyuk, V. B. Cajipe, and X. Bourdon, “Second harmonic generation in the lamellar ferrielectric CuInP2S6,” Solid State Communications, vol. 115, no. 11, pp. 605-608, 2000.
    [30] V. Maisonneuve, V. Cajipe, and C. Payen, “Low-temperature neutron powder diffraction study of copper chromium thiophosphate (CuCrP2S6): observation of an ordered, antipolar copper sublattice,” Chemistry of Materials, vol. 5, no. 6, pp. 758-760, 1993.

    [31] J. Banys, V. Samulionis, and V. Cajipe, “Dielectric properties in the vicinity of phase transition of new ferroelectric CuInP2S6,” Ferroelectrics, vol. 223, no. 1, pp. 43-50, 1999.
    [32] A. V. Ievlev, M. A. Susner, M. A. McGuire, P. Maksymovych, and S. V. Kalinin, “Quantitative Analysis of the Local Phase Transitions Induced by Laser Heating,” ACS Nano, vol. 9, no. 12, pp. 12442-50, 2015.
    [33] L. Beley, O. Mykajlo, V. Stephanovych, I. Studenjak, M. Gurzan, and M. Vysochanskii Yu, “Dipole glassy state eYidence for CuInP2 (Se S)6 ferrielectric mixed crystals from Raman scattering and optical absorption data,” Ukr. J. Phys. Opt, vol. 8, pp. 1-14, 2007.
    [34] M. A. Susner, M. Chyasnavichyus, A. A. Puretzky, Q. He, B. S. Conner, Y. Ren, D. A. Cullen, P. Ganesh, D. Shin, and H. Demir, “Cation–Eutectic Transition via Sublattice Melting in CuInP2S6/In4/P2S6 van der Waals Layered Crystals,” ACS Nano, vol. 11, no. 7, pp. 7060-7073, 2017.
    [35] 許樹恩、吳泰伯, “X光繞射原理與材料結構分析” 中國材料科學學會, 1996.

    無法下載圖示 全文公開日期 2025/01/06 (校內網路)
    全文公開日期 2025/01/06 (校外網路)
    全文公開日期 2025/01/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE