簡易檢索 / 詳目顯示

研究生: 許佑勛
You-Xun Xu
論文名稱: 銀和銅之層狀鉍化硒代磷酸鹽化合物之晶體成長與特性研究
Crystal growth and characterization of the metal thiophosphates (MTPs) of AgBiP2Se6 and CuBiP2Se6
指導教授: 何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
口試委員: 何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
周宏隆
Hung-Lung Chou
林俊良
Chun-Liang Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 117
中文關鍵詞: 化學氣相傳導法鉍化硒代磷酸鹽化合物
外文關鍵詞: Chemical vapor transport, the metal thiophosphates (MTPs)
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究重點在於利用化學氣相傳導法 (Chemical Vapor Transport, CVT) 成長金屬鉍化硒代磷酸鹽之化合物 AgBiP2Se6和CuBiP2Se6,並探討其材料結構、光學和電學特性。接著透過能量散射光譜儀 (Energy-dispersive X-ray Spectroscopy, EDS)、X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS)、穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 結果,確認此次成長的材料與預期相符。在材料結構鑑定中,藉由X射線晶體繞射儀 (X-ray Diffraction Analysis, XRD) 分析,得到AgBiP2Se6 之晶格常數 a=b = 6.89 Å、c=39.39 Å;CuBiP2Se6 之晶格常數 a=b = 6.59 Å、c=39.78 Å,因此可得知此兩種材料皆屬於菱方晶系 (Rhombohedral)。由常溫拉曼光譜 (Raman Spectroscopy) 觀察到 AgBiP2Se6及CuBiP2Se6皆具有陽離子振盪、Se-P-Se 振動模態和 P-P 拉伸三種振動模態。其中AgBiP2Se6由於Ag離子較重,因此在陽離子震盪有較低的波數。通過極化拉曼和溫度相依實驗觀察到不同角度和溫度下各振動模態的變化。在光學量測方面,利用穿透實驗 (Transmittance) 和熱調制光譜 (Thermoreflectance, TR) 實驗得到材料的能隙位置。AgBiP2Se6 能隙為 1.47 eV,在結合溫度相依變化觀察到能量隨溫度降低而增加,逐漸藍移至 1.62 eV ,其中在100K以下,可以發現有三個峰包,推測為結構產生改變所導致,CuBiP2Se6 能隙為 1.22 eV,結合溫度相依變化觀察到能量也隨溫度降低而增加,逐漸藍移至 1.34 eV。在電學量測方面,利用熱探針實驗可得知AgBiP2Se6 與CuBiP2Se6兩種材料皆為 n 型半導體。在照光V-I量測中發現,AgBiP2Se6具有光響應,其中鎢絲燈的光響應較大,而CuBiP2Se6則無明顯光響應,推測是其濃度較高 (1017 cm-1) 所致。


    AgBiP2Se6 and CuBiP2Se6 compounds were successfully grown using the chemical vapor transport (CVT) method with ICl3 as a transport agent. The material structures, optical, and electrical properties were carried out. The synthesized materials were confirmed to match the expected composition through energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) analysis. Furthermore, X-ray diffraction (XRD) analysis revealed that AgBiP2Se6 had lattice constants of a=b=6.89 Å and c=39.39 Å, while CuBiP2Se6 had lattice constants of a=b=6.59 Å and c=39.78 Å, indicating that both materials belong to the rhombohedral crystal system. Raman spectroscopy showed that AgBiP2Se6 and CuBiP2Se6 exhibited three vibrational modes: cation oscillation, Se-P-Se mode, and P-P stretching. The variations of these vibrational modes were observed through polarized Raman and temperature-dependent experiments at different angles and temperatures. The band gaps of the materials were determined through transmission experiments and thermal modulation spectroscopy. The band gap of AgBiP2Se6 was determined to be 1.47 eV at 300K and increased with decreasing temperature, shifting progressively toward higher energy to 1.62 eV at 20K. The band gap of CuBiP2Se6 was 1.22 eV at 300K and shifted towards 1.35 eV at 20K. AgBiP2Se6 and CuBiP2Se6 were confirmed to be n-type semiconductors by hot probes and Hall effect measurements. During current-voltage (V-I) measurements, AgBiP2Se6 exhibited photoresponse, with tungsten halogen lamp illumination resulting in a more significant response than CuBiP2Se6. In current-voltage (V-I) measurements, AgBiP2Se6 exhibited photoresponse, with tungsten halogen lamp illumination yielding a better response than CuBiP2Se6. Overall, the effective synthesis and exhaustive characterization of AgBiP2Se6 and CuBiP2Se6 compounds have contributed significantly to our understanding of their structural and optical properties. These results have implications for the design of optoelectronic devices using these materials.

    目錄 摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 X 表目錄 XV 第一章 緒論 1 第二章 晶體合成 4 2.1材料元素秤重 5 2.2 石英管清洗 7 2.3封閉石英管 8 2.4 三區成長高溫爐 9 2.5 化學氣相傳導法 (Chemical Vapor Transport, CVT) 10 2.6晶體化合與成長 12 第三章 實驗原理與量測系統 14 3.1 掃描式電子顯微鏡 (SEM) 15 3.2 能量色散 X 射線光譜 (EDS) 16 3.3 穿透式電子顯微鏡 (TEM) 19 3.4 X 射線光電子能譜儀 (XPS) 21 3.5 X-ray 晶格繞射分析儀 (XRD) 23 3.6 原子力顯微鏡 (AFM) 26 3.7 拉曼散射光譜 (Raman Spectroscopy) 28 3.8 光穿透光譜 (Transmittance) 31 3.9 熱調制反射光譜 (TR) 33 3.10熱探針量測 (Hot Probe) 38 3.11 照光之電壓電流量測 (Photo V-I) 39 3.12 霍爾效應 (Hall Effect) 40 第四章 實驗結果與分析 44 4.1 能量色散 X 射線譜分析 44 4.1.1 AgBiP2Se6 EDS 分析結果 44 4.1.2 CuBiP2Se6 EDS 分析結果 45 4.2 穿透式電子顯微鏡影像分析 46 4.2.1 AgBiP2Se6 TEM 分析結果 46 4.2.2 CuBiP2Se6 TEM 分析結果 47 4.3 X 射線光電子能譜分析 49 4.3.1 AgBiP2Se6 XPS 分析結果 49 4.3.2 CuBiP2Se6 XPS 分析結果 54 4.4 X 射線晶格繞射分析 59 4.4.1 AgBiP2Se6 XRD 分析結果 59 4.4.2 CuBiP2Se6 XRD 分析結果 61 4.5 厚度特性分析 64 4.5.1 AgBiP2Se6 與 CuBiP2Se6厚度特性分析結果 64 4.6 拉曼散射光譜分析 66 4.6.1 AgBiP2Se6 與CuBiP2Se6 Raman 分析結果 66 4.7 光穿透光譜分析 74 4.7.1 AgBiP2Se6 與 CuBiP2Se6光穿透分析結果 74 4.8 熱調制反射光譜分析 79 4.8.1 AgBiP2Se6 TR 分析結果 79 4.8.2 CuBiP2Se6 TR 分析結果 83 4.9 熱探針實驗結果分析 87 4.9.1 AgBiP2Se6 熱探針分析結果 87 4.10.2 CuBiP2Se6 熱探針分析結果 88 4.10 照光之電壓電流量測結果分析 89 4.11.1 AgBiP2Se6 V-I 分析結果 89 4.11.2 CuBiP2Se6 V-I 分析結果 91 4.11 霍爾量測結果分析 92 4.11.1 CuBiP2Se6 霍爾量測分析結果 92 第五章 結論 93 參考文獻 95

    [1] J.A Wilson and A.D. Yoffe,"The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and atructural propertis,"Adv. Phys., vol.18,pp. 193-335,1969.
    [2] T. V. Vu, O. Y. Khyzhunc, A. A. Lavrentyevd, B. V. Gabreliane, V. I. Sabovf, M. Y. Sabov, M. Y. Filep, A. I. Pogodin, I. E. Barchiy, A. O. Fedorchukh, B. Andriyevsky, and M. Piasecki, "Highly anisotropic layered crystal AgBiP2Se6: Growth, electronic band-structure and optical properties," Mater. Chem. Phys., vol. 277, p. 125556, 2022.
    [3] V. Liubachko, A. Oleaga, A. Salazar, A. Kohutych, K. Glukhov, Y. Vysochanskii, "Cation role in the thermal properties of layered materials M1+M3+P2(S, Se)6 (M1+ = Cu, Ag; M3+ = In, Bi)," Phys. Rev. Mater., vol. 3, no. 10, p. 104415, 2019.
    [4] B. Xu, H. Xiang, Y. Xia, K. Jiang, X. Wan, J. He, J. Yin, and Z. Liu, "Monolayer AgBiP2Se6: An atomically thin ferroelectric semiconductor with out-plane polarization," Nanoscale, vol. 9, no. 24, pp. 8427-8434, 2017.
    [5] X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B. K. Tay, P. M. Ajayan, "Chemical vapor deposition growth of crystalline monolayer MoSe2," ACS Nano, vol. 8, no. 5, pp. 5125-5131, 2014.
    [6] R. Uecker, "The historical development of the Czochralski method," J. Cryst. Growth, vol. 401, pp. 7-24, 2014.
    [7] H. Schäfer, "Chemical transport reactions," Academic Press, New York, USA 1964.
    [8] D. Hu, G. Xu, L. Xing, X. Yan, J. Wang, J. Zheng, Z. Lu, P. Wang, X. Pan, and L. Jiao, "Two‐dimensional semiconductors grown by chemical vapor transport," Angew. Chem.Int. Edit., vol. 56, no. 13, pp. 3611-3615, 2017.
    [9] M. A. Gave, D. Bilc, S. Mahanti, J. D. Breshears, and M. G. Kanatzidis, "On the lamellar compounds CuBiP2Se6, AgBiP2Se6 and AgBiP2S6 Antiferroelectric phase transitions due to cooperative Cu+ and Bi3+ ion motion," Inorg. Chem., vol. 44, no. 15, pp. 5293-5303, 2005.
    [10] H. Seiler, "Secondary electron emission in the scanning electron microscope," J. Appl. Phys., vol. 54, no. 11, pp. R1-R18, 1983.
    [11] C. M. Becchi and M. D'Elia, "Introduction to the basic concepts of modern physics," Springer, New York, USA 2007.
    [12] R. F. Egerton, "Physical principles of electron microscopy," Springer, New York, USA 2005.
    [13] J. F. Watts, J. Wolstenholme, "An introduction to surface analysis by XPS and AES," John Wiley & Sons Inc, New York, USA 2003.
    [14] X. Zhu, R. Birringer, U. Herr, and H. Gleiter, "X-ray diffraction studies of the structure of nanometer-sized crystalline materials," Phys. Rev. B, vol. 35, no. 17, p. 9085, 1987.
    [15] C. Kittel, "Introduction to solid state physics," John Wiley & Sons Inc, New York, USA 1996.
    [16] S. N. Magonov and M. H. Whangbo, "Surface Analysis with STM and AFM," VCH, Weinheim, 1996.
    [17] P. Graves and D. Gardiner, "Practical raman spectroscopy," Springer, New York, 1989.
    [18] S. Perkowitz, "Optical characterization of semiconductors: infrared, Raman, and photoluminescence spectroscopy," Academic Press, San Diego, 1993.
    [19] H. W. Verleur, "Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films," J. Opt. Soc. Am. B-Opt. Phys., vol. 58, no. 10, pp. 1356-1364, 1968.
    [20] F. H. Pollak and H. Shen, "Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices," Mater. Sci. Eng. R-Rep., vol. 10, no. 7-8, pp. xv-374, 1993.
    [21] B. Seraphin, R. Hess, and N. Bottka, "Field Effect of the Reflectivity in Germanium," J. Appl. Phys., vol. 36, no. 7, pp. 2242-2250, 1965.
    [22] C. H. Ho, H. W. Lee, and Z. H. Cheng, "Practical thermoreflectance design for optical characterization of layer semiconductors," Journal of Review of Scientific Instruments, vol. 75, no. 4, pp. 1098-1102, 2004.
    [23] A. Axelevitch and G. Golan, "Hot-probe method for evaluation of majority charged carriers concentration in semiconductor thin films," Facta Univ.-Ser. Electron. Energ., vol. 26, no. 3, pp. 187-195, 2013.
    [24] T. C. Harman, J. H. Cahn, and M. J. Logan, "Measurement of thermal conductivity by utilization of the Peltier effect," J. Appl. Phys., vol. 30, no. 9, pp. 1351-1359, 1959.
    [25] O. Philips, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape," Philips Research Report, vol. 13, no. 1, pp. 1-9, 1958.
    [26] D. K. Schroder, "Semiconductor material and device characterization," John Wiley & Sons Inc, New York, 1990.
    [27] C. H. Ho, S. F. Hu, and H. W. Chang, "Thermoreflectance characterization of the band-edge excitons observed in multilayered CuInP2S6," FlatChem, vol. 29, p. 100290, 2021.
    [28] L. M. Beley, O. A. Mykajlo, V. O. Stephanovych, and I. P. Studenjak, "Dipole glassy state evidence for CuInP2(SexS1-x)6 ferrielectric mixed crystals from Raman scattering and optical absorption data," Ukr. J. Phys. Opt., vol. 8, pp. 13-24, 2007.
    [29] X. Wang, J. Wang, J. Wang, B. Wei, and Z. Wang, "Atomic structure and electronic property of two-dimensional ferroelectric CuInP2Se6," Ceram.int, vol. 46, no. 6, pp. 7014-7018, 2020.

    無法下載圖示 全文公開日期 2028/08/15 (校內網路)
    全文公開日期 2028/08/15 (校外網路)
    全文公開日期 2028/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE