簡易檢索 / 詳目顯示

研究生: 黃韋舜
Wei-Shun Huang
論文名稱: 藍寶石晶圓之化學機械拋光實驗與分析
Experiment and analysis of chemical mechanical polishing(CMP) of sapphire wafer
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 傅光華
GUANG-HUA FU
許覺良
JYUE-LIANG HU
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 200
中文關鍵詞: 藍寶石晶圓化學機械拋光表面形貌回歸分析
外文關鍵詞: sapphire wafer, chemical mechanical polishing(CMP), regression analysis, surface
相關次數: 點閱:302下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是探討化學機械拋光(Chemical Mechanical Polishing, CMP )加工硬脆材料-藍寶石晶圓(Sapphire wafer)基板的加工機制,利用含有 的拋光液與基板接觸產生化學反應移除藍寶石晶圓,觀察在不同下壓力、拋光轉速和不同形貌的拋光墊、拋光粒徑及拋光液濃度對於藍寶石晶圓的移除量以及表面形貌的變化。並搭配回歸分析理論,針對Preston研磨玻璃上所提出的方程式 做出改善,並針對因拋光液體積濃度的改變造成的誤差提出補償參數Crv。最後再配以田口進行最佳化分析(ANOVA),找出不同參數對於移除量的影響,以及在不同的參數下,表面形貌的變化。
    實驗分析結果顯示給予的下壓力、轉速若越大,則移除量越多,表面有花紋的拋光墊較無花紋的拋光墊移除量多。拋光粒徑和拋光濃度方面,當粒徑越小,拋光液濃度越高,研磨晶圓的研磨顆粒較多,因此擁有較佳的移除量,並由田口最佳化分析得知,拋光液中的體積濃度和粒徑對移除量的影響較下壓力和轉速顯卓。表面形貌方面,當下壓力越大和轉速越快,表面會擁有刮痕,當拋光顆粒越小,濃度越濃,表面刮痕有增加的趨勢。藉由以上的分析結果,對於藍寶石晶圓研磨研究給予幫助。


    The study mainly explores the processing mechanism of a hard and brittle material, sapphire wafer substrate by chemical mechanical polishing (CMP). A polishing fluid containing SiO2 is used to contact with substrate to produce chemical reaction for removal of sapphire wafer. The paper observes how polishing pads under different pressures, different rotational speeds of polishing and different profiles, as well as the polishing particle size and polishing fluid concentrations create changes to the removal volume and surface profile of sapphire wafer. Also using regression analysis theory, and focusing on the equation MRR = KpPV proposed for Preston polishing glass, improvement is to be made. Focusing on the error caused by the concentration change of polishing fluid, a compensation parameter, Crv is proposed. Finally, Taguchi method is adopted to carry out optimal ANOVA, acquiring the effects of different parameters on removal volume, and the change of surface profile under different parameters.
    As shown from the results of experimental analysis, if the lower pressure and rotational speed are greater, the removal volume will be more. The removal volume of the polishing pad with pattern on the surface is greater than that of the polishing pad without pattern on the surface. As to polishing particle size and polishing concentration, when particle size is smaller, the concentration of polishing fluid is higher, and the quantity of polishing particles of polishing wafer is more, thus achieving better removal volume. And as known from Taguchi optimization analysis, the effects of volume concentration and particle size of polishing fluid on removal volume are more obvious than the effects of lower pressure and rotational speed. In the aspect of surface profile, when lower pressure is greater and rotational speed is faster, scratches will be formed on the surface. When the polishing particle size is smaller and the concentration of polishing fluid is denser, there is a trend that more scratches are formed on the surface. Through the above analytical results, much help is offered to the studies of sapphire wafer polishing.

    摘要I AbstractII 誌謝IV 目錄V 表目錄XIV 第一章 緒論1 1.1前言1 1.2文獻回顧4 1.3研究動機7 1.4論文架構9 第二章實驗設備與實驗步驟10 2.1實驗設備10 2.1.1 PM-5軟式拋光機10 2.1.2拋光墊11 2.1.3拋光液12 2.1.4多模態原子力顯微鏡D310012 2.2實驗原理19 2.2.1化學機械拋光(CMP)19 2.2.2拋光加工方式20 2.2.3原子力顯微鏡的操作原理21 2.2.4粗糙度的定義23 2.3 實驗步驟25 第三章回歸分析理論與最佳化27 3.1迴歸分析理論27 3.1.1最小平方指數法27 3.1.2最小平方指數法估計矩陣30 3.1.3多元線性迴歸模型31 3.1.3 矩陣表示法33 3.1.4二次線性迴歸35 3.2田口實驗計畫法36 第四章 實驗結果與回歸分析41 4.1藍寶石晶圓化學機械拋光實驗結果41 4.1.1 無花紋拋光墊實驗結果43 4.1.1.1無花紋拋光墊,0.06um粒徑實驗結果43 4.1.1.2無花紋拋光墊,0.05um粒徑實驗結果48 4.1.1.3無花紋拋光墊,0.02um粒徑實驗結果53 4.1.2 孔洞紋拋光墊實驗結果58 4.1.2.1孔洞紋拋光墊,0.06um粒徑實驗結果58 4.1.2.2孔洞紋拋光墊,0.05um粒徑實驗結果63 4.1.2.3孔洞紋拋光墊,0.02um粒徑實驗結果68 4.2 藍寶石晶圓化學機械拋光移除量KpPV公式回歸73 4.2.1最小平方法回歸分析74 4.2.2無花紋拋光墊下壓力與速度迴歸分析75 4.2.2.1 無花紋拋光墊下壓力與速度迴歸結果77 4.2.3 孔洞紋拋光墊下壓力與速度迴歸分析82 4.2.3.1 孔洞紋拋光墊下壓力與速度迴歸結果83 4.3 濃度補償參數Crv90 4.3.1二次線性迴歸90 4.3.2 無花紋拋光墊KpvPV+Crv補償參數模擬92 4.3.3 孔洞紋拋光墊KpvPV+Crv補償參數模擬100 4.4 田口法分析113 4.4.1 田口法進行化學機械拋光藍寶石晶圓113 4.4.1.1田口法之控制因子113 4.3.2無花紋拋光墊田口實驗分析結果119 4.4.3 孔洞紋拋光墊田口實驗分析結果137 4.4.4田口迴歸分析結果151 4.5 表面形貌和粗操度與平坦度分析152 4.5.1表面粗操度分析153 4.5.1.1 無花紋拋光墊表面粗操度153 4.5.1.2 孔洞紋拋光墊表面粗操度165 4.5.2. 五小區間各自形貌中各區塊最低點位置高度之表面形貌實驗結果177 4.5.2.1 無花紋五小區間各自形貌中各區塊最低點位置高度之表面形貌實驗結果178 4.5.2.2 孔洞紋五小區間各自形貌中各區塊最低點位置高度之表面形貌實驗結果185 4.5.3 化學機械拋光藍寶石晶圓表面形貌結果192 第五章 結論與建議193 5.1結論193 5.2建議196 參考文獻197

    [1] Anthony J. Clark, “Oxide Removal Rate Interractions between Slurry, Pad, Downforce, and Conditioning”, Rodel Inc.

    [2] Wei-En Fu, Tzeng-Yow Lin, Meng-Ke Chen, Chao-Chang A.Chen ”Surface qualities after chemical-mechanical polishing on thin films”, The Solid Films,pp 4909-4915 (2009)

    [3] Shengiun Zhou, Sheng Liu, ”Study on sapphire removal for thin-film LEDs fabrication using CMP and dry etching”, Applied Surface Science, pp9469-9473 (2009)

    [4] J. Bai, Y.W. Zhao, Y.G. Wang, “A mathematical model for material removal and chemical-mechanical synergy in chemical-mechanical polishing at molecular scale” ScienceDirect, pp8489-8494, (2007)

    [5] Kihyun park, Jiheon OH, and Haedo JEONG, “Pad Characterization and Experimental Analysis of Pad Wear Effect on Material Removal Uniformity in Chemical Mechanical Polishing” Japanese Journal of Applied Physics, Vol.47, NO. 10, pp. 7812-7817, (2008)

    [6] Yongwu Zhao, L. Chang, S.H.Kim, “A mathematical model for chemical-mechanical polishing based on formation and removal of weakly bonded molecular species” Wear 254, pp332-339, (2003)

    [7] H.D.Jeong, K.H. Park, K.K. Cho, “CMP Pad Break-in Time Reduction in Silicon Wafer Polishing”, Annals of the CIRP Vol. 56, pp.357-360, (2007)

    [8] Honglin Zhu, Luiz A. Tessaroto, Robert Sabia, Victor A. Greenhut, Maynard Smith, Dale E. Niesz, ”Chemical mechanical polishing(CMP) anisotropy in sapphire”, Applied Surface Science 236, pp.120-130, (2004)

    [9] Edward E. Remsen, Sriram Anjur, David Boldridge, Mungai Kamiti, Shoutian Li, Timothy Johns, Charles Dowell, Jaishanker Kasthurirangan, and Paul Feeney, “Analysis of Large Particle Count in Fumed Silica Slurries and Its Correlation with Scratch Defects Generated by CMP” Journal of Electrochemical Society, 153, pp453-461, (2006)

    [10] Nam-Hoon Kim, Pil-Ju Ko, Gwon-Woo Choi, Yong-Jin Seo, Woo-Sun Lee, “Chemical mechanical polishing(CMP) mechanisms of thermal film after high-temperature pad conditioning”, Thin Solid Films 504, pp166-169, (2006)

    [11] Yongqing Lan, Yuzhuo Li, “Case study for particle agglomeration during chemical mechanical polishing process”,

    [12] Woo-Jin Lee, Hyung-Soon Park, Heon-Cheol Shin, “Enhancement of CMP pad lifetime for shallow trench isolation process using profile simulation”, Current Applied physics 9, pp134-137, (2009)

    [13] K. Palanikumar, “Application of Taguchi and response surface methodologies for surface roughness in machining glass fiber reinforced plastics by PCD tooling”, Int J Adv Manuf Technol 36, pp19-27, (2008)

    [14] Chijuan Li, Jingling Xiao, “The experimental study of super smooth surface processing technology for optical galss and sapphire component”, Proc. Of SPIE Vol. 5635 pp349-360

    [15] Yinzhen Wang, Lingling Zhang, Shengming Zhou, Jun Xu, “Surface Treatment Effects of sapphire for High Quality Ⅲ-Nitride Film Growth”, Proc. Of SPIE Vol 5628, pp228-245

    [16] Boumyoung Park, Hyunseop Lee, Kihyun Park, Hyoungjae Kim, Haedo Jeong, “Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry”, Journal of Materials Processing Technology 203, pp287-292, (2008)

    [17] Yongsong Xie, Bharat Bhushan, “Effects of particle size, polishing pad and contact pressure in free abrasive polishing”, Wear 200, 281-295, (1996)

    [18]Hong Lei, Jianbin Luo, “CMP of hard disk substrate using a colloidal slurry: preliminary experimental invertigation”, Wear 257, pp461-470, (2004)

    [19] Liu Yuling, Tan Baimei, Niu Xinhuan, Zhao Haitao, “Control technique of Sapphire roughness in CMP processing”, pp1-6

    [20] 楊慶賓,「近場光學微影加工製程及非破壞方法逆解光纖探針口徑研究」,國立台灣科技大學,九十四年

    [21] 王彥松,「單晶α相氧化鋁晶圓基板平坦化加工研究」,國立台灣科技大學,九十二年七月

    [22] 許厲生,「矽晶圓薄化與平坦化加工研究」,國立台灣科技大學,九十六年七月

    [23] 林真真,「回歸分析」,華泰書局出版,八十二年七月

    [24] 劉昭宏,「非等厚塑膠光學元件收縮補償之模流分析」,國立台灣科技大學,九十四年六月

    [25] 陳建中,「專利技術突破系統化分析及其應用研究」,國立台灣科技大學,九十八年七月十三日

    無法下載圖示 全文公開日期 2015/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE