簡易檢索 / 詳目顯示

研究生: Dula Daksa Ejeta
Dula Daksa Ejeta
論文名稱: 無氟超疏水高分子複合材料製備及其在高效能油水分離與乳化液分離之應用
Preparation of Fluorine- and Nanoparticle-Free Superhydrophobic Polymer Composites for Oil/water Mixtures and Water-in-Oil Emulsions Separation
指導教授: 王志逢
Chih-Feng Wang
賴君義
Juin-Yih Lai
口試委員: 王志逢
Chih-Feng Wang
賴君義
Juin-Yih Lai
洪維松
Wei-Song Hung
胡蒨傑
Chien-Chieh Hu
王大銘
Da-Ming Wang
郭紹偉
Shiao-Wei Kuo
黃智峰
Chih-Feng Huang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 207
中文關鍵詞: 超疏水超親油聚(4-乙基苯酚)聚氧代氮代苯并環己烷熱固形高分子油水分離乳化液分離
外文關鍵詞: superhydrophobicity, polymer composites, fluorine-free, nanoparticle-free, low surface energy polymers, oil/water separation, emulsion separation
相關次數: 點閱:382下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在工業上以及我們的日常生活中常會產生許多含油廢水,這些含油廢水的排放以及海面上的漏油汙染皆會對自然環境造成嚴重的影響。此外,在石油化學工業中,油品中的少量水分也會對其造成許多問題,這些問題需耗費許多資源來解決。因此,開發具有高通量、低耗能、操作簡易、低成本、可量產之乳化劑穩定油包水乳化液處理材料是一個重要的課題。在本研究分為三個部分,我們製備三種具有不含氟、價格低廉之超疏水高分子複合材料。第一個研究中,我們利用聚(4-乙基苯酚)與1,3-phenylene bisoxazoline改質市售棉花,製備具有超疏水與超親油特性之高分子複合材料。此材料經壓縮後可應用於油包水乳化液分離,在重力過濾與加壓過濾下可分別展現10,400 L m-2 h-1 (gravity-driven) and 867,500 L m-2 h-1 bar-1 (0.1 bar)的高通量。在第二個研究中,我們以主練型聚氧代氮代苯并環己烷改質美耐皿海綿製備超疏水材料,此材料展現極佳的吸油特性(最多可吸附本身重量170倍之油汙),壓縮後可應用於油包水乳化液分離,在重力過濾與加壓過濾下可分別展現13,900 L m-2 h-1 (gravity-driven) and 1,353,000 L m-2 h-1 bar-1 (0.025 bar)的高通量。最後一個研究中,我們利用酚醛樹脂與氧代氮代苯并環己烷改質市售棉花,製備超疏水高分子複合材料。此材料可應用於油水混和液分離,展現1.8x105 L m-2 h-1的高通量。壓縮後可應用於油包水乳化液分離,展現1.6x106 L m-2 h-1 bar-1 (0.025 bar)的高通量。以上的乳化液分離實驗中,濾液的油純度皆高於99.95 wt%,分離效果良好。我們的超疏水高分子複合材料因其高通量、高分離效率、低成本的製備方法皆說明它們在現實應用中具有巨大的潛力。


    Nowadays, the discharge of large quantities of oily wastewater from our daily life and Industries, and the frequent oil spill accidents occurred all over the world have caused serious environmental problems. In addition, in transportation field, from production to refining petroleum and related products, a little amount of water in oil is common and causes operational problems, flow blockage, corrosion, inefficient separation, and consequently, adding high costs to the processing, transportation, and separation units. Therefore, an effective method or technology which can demonstrate the separation of surfactant-stabilized water-in-oil emulsions (SS-WOEs) in ultrahigh flux, excellent efficiency, easy operation, low energy consumption, good scalability, and recyclability is needed to resolve such issues. In this thesis work, stable superhydrophobic and superoleophilic (SHASO) materials were prepared from environmentally friendly, cost-effective, and nonfluorinated coating polymer and substrates composites via facile coating methods. In the first work, raw cotton-based SHASO material was prepared from poly(vinyl phenol)-1,3-phenylene bisoxazoline (PVPh-PBO) cross-linked polymer (PPCP) coating via facile immersion-curing method. The as-prepared material with water contact angle (WCA) of ~ 156o and oil CA (OCA) of ~ 0o, remarkably shows ultrahigh permeation fluxes of up to 10,400 L m-2 h-1 (gravity-driven) and 867,500 L m-2 h-1 bar-1 (0.1 bar) for SS-WOEs. In the second work, a melamine sponge-based superhydrophobic (WCA ~ 162.5°) and superoleophilic (OCA ~ 0o) material was prepared from Main-chain-type polybenzoxazine polymer coating via water-based nonsolvent-induced phase inversion method. The as-prepared material can remove oil/organic solvents from the surface of water, as well as underwater quickly with an outstanding absorption capacity (up to 170 times its weight) for chloroform, and most importantly, it extraordinarily displays ultrahigh permeation fluxes of up to 13,900 L m-2 h-1 (gravity-driven) and 1,353,000 L m-2 h-1 bar-1 (0.025 bar) for SS-WOEs. And in the third work, cotton-based SHASO materials were prepared from a cross-linked phenolic resin (PR) with bis(3-phenyl-3,4-dihydro-2H-1,3-benzoxazinyl)methane (BFA) as a coating chemical via similar method with the first work. The as-prepared materials possess in air WCA greater than 160o, and OCA ~ 0o, exhibiting remarkable separation performances for both simple oil/water mixtures and SS-WOEs with flux values of up to 1.8x105 L m-2 h-1 and 1.6x106 L m-2 h-1 bar-1, respectively. Generally, the as-prepared materials show an extraordinary separation performance of various SS-WOEs with ultrahigh flux and excellent minimum oil purity of 99.95 wt%. Essentially, most of coating polymer composites and all the substrates used in this study are commercially available, naturally abundant, cost-effective, eco-friendly and non-toxic. Furthermore, the coating methods and operation techniques applied herein are very simple, economical, effective, and easily scaled up for mass production and able to solve the problems associated with other methods that unable to generate large area substrates.

    Table of Contents Contents Page Acknowledgment i Abstract ii 摘要 … iv Table of Contents v List of Figures x List of Schemes xviii Abbreviations xxi Chapter 1: General introduction 1 1.1 Background 1 1.2 Organization of the thesis 4 1.3 Motivation and objectives 5 1.3.1 Motivation 5 1.3.2 Objectives 6 Chapter 2: Review of related literatures 9 2.1 Fundamental understanding of wettability 9 2.1.1 Basic theories: Young’s equation 10 2.1.2 Wenzel model 12 2.1.3 CassieBaxter model 14 2.1.4 Surface wettability measurements 16 2.1.4.1 Static CA 16 2.1.4.2 Dynamic CAs 18 2.2 Classification of superwettable materials 20 2.3 Nature-inspired superwettable materials 21 2.4 Superhydrophobic surfaces and their fabrications 23 2.4.1 Superhydrophobic surfaces 23 2.4.2 Fabrication of superhydrophobic surfaces 25 2.5 Proposed methods to predict surface free energy of a solid material 32 2.6 The role of hydrogen bonding in determining surface free energy of polymer materials 36 2.7 Applications of superhydrophobic materials 44 2.8 Application of superhydrophobic materials for oil/water separation 46 2.8.1 Oils 46 2.8.2 The sources of oil contaminants in oily wastewater and their adverse effects 46 2.9 Research status on oil/water separation technologies 48 2.9.1 Oil/water mixtures 48 2.9.2 Oil/water separation technologies 50 2.10 Materials used for oil/water separations 55 2.11 SHASO materials: Fabrication and separation mechanisms 56 2.11.1 Fabrication 57 2.11.2 Separation mechanisms 59 2.12 Challenges 66 Chapter 3: Preparation of superhydrophobic and superoleophilic raw-cotton-based material for extremely high flux water-in-oil emulsion separation 68 3.1 Introduction 68 3.2 Experimental section 69 3.2.1 Materials 69 3.2.2 Methods 70 3.2.2.1 Preparation of polymer thin films 70 3.2.2.2 Preparation of cotton-based SHASO material 70 3.2.2.3 Preparation of SS-WOEs 71 3.2.2.4 Water-in-oil emulsions separation experiment 71 3.2.2.5 Quantitative evaluations 71 3.2.2.6 Material stability tests 72 3.2.2.7 Instruments and characterization 72 3.3 Results and discussions 73 3.3.1 Preparation of PPCP thin films and PBC@RC 73 3.3.2 Surface wettability, morphology, and chemical composition characterizations 76 3.3.2.1 Surface wettability characterizations 76 3.3.2.2 Characterization of surface morphology and chemical compositions 79 3.3.3 Stability tests 82 3.3.4 Separation of water-in-oil emulsions 86 3.3.4.1 Separation of surfactant-free and SS-WOEs 86 3.3.4.2 Separation mechanisms 93 3.3.4.3 Antifouling property 95 3.4 Conclusions 96 Chapter 4: Preparation of a main-chain-type polybenzoxazine-modified melamine sponge via non-solvent-induced phase inversion for oil absorption and very-high-flux separation of water-in-oil emulsions 99 4.1 Introduction 99 4.2 Experimental section 101 4.2.1 Materials 101 4.2.2 Methods 101 4.2.2.1 Preparation procedures of HTPMS 102 4.2.2.2 Preparation of oil/water mixtures and water-in-oil emulsions 102 4.2.2.3 Oil/water mixtures separation experiments 102 4.3 Results and discussions 103 4.3.1 Preparation of HTPMS 103 4.3.2 Surface wettability characterizations 106 4.3.3 Morphology and chemical composition characterizations 108 4.3.4 Chemical and mechanical stabilities 111 4.3.5 Oil/water separation potential of HTPMS 116 4.3.5.1 Absorption capacity of HTPMS 116 4.3.5.2 Separation of SS-WOEs 120 4.3.5.3 Separation mechanisms 124 4.3.5.4 Antifouling property and recyclability of HTPMS 126 4.4 Conclusions 128 Chapter 5: Preparation of low cost cotton-based superhydrophobic and superoleophilic materials for successful separation of simple oil/water mixtures and water-in-oil emulsions with remarkable performance 129 5.1 Introduction 129 5.2 Experimental section 131 5.2.1 Materials 131 5.2.2 Methods 132 5.2.2.1 Preparation of PR thin films and superhydrophobic cotton-based substrates 132 5.2.2.2 Oil/water mixtures separation experiment 132 5.3 Results and discussions 133 5.3.1 Preparation of PR80 films and PR80@CMs 133 5.3.2 Surface wettability, morphology, and chemical composition characterizations 140 5.3.2.1 Surface wettability characterizations 140 5.3.2.2 Surface morphology and chemical compositions characterizations 144 5.3.3 Stability of PR80@CMs under various conditions 146 5.3.4 Oil/water separation performance of PR80@CF and PR80@RC 148 5.3.4.1 Separation of simple oil/water mixtures 150 5.3.4.2 Separation of SS-WOEs 155 5.3.4.3 Recyclability 159 5.4 Conclusions 161 Chapter 6: Conclusions and future prospective 162 References 164 List of research papers, oral presentations, and other achievements 179

    [1] Y. Liu, X. Wang, S. Feng, Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil–water separation, Adv. Funct. Mater. 29 (2019) 1902488.
    [2] J. Yang, H. Wang, Z. Tao, X. Liu, Z. Wang, R. Yue, Z. Cui, 3D superhydrophobic sponge with a novel compression strategy for effective water-in-oil emulsion separation and its separation mechanism, Chem. Eng. J. 359 (2019) 149-158.
    [3] B. Peng, Z. Yao, X. Wang, M. Crombeen, D.G. Sweeney, K.C. Tam, Cellulose-based materials in wastewater treatment of petroleum industry, Green Energy Environ. 5 (2020) 37-49.
    [4] Y. Guan, F. Cheng, Z. Pan, Superwetting Polymeric Three Dimensional (3D) Porous Materials for Oil/Water Separation: A Review, Polymers 11 (2019) 806.
    [5] R.K. Gupta, G.J. Dunderdale, M.W. England, A. Hozumi, Oil/water separation techniques: a review of recent progresses and future directions, J. Mater. Chem. A 5 (2017) 16025-16058.
    [6] S. Rasouli, N. Rezaei, H. Hamedi, S. Zendehboudi, X. Duan, Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review, Mater. Des. 204 (2021) 109599.
    [7] Y. Deng, C. Peng, M. Dai, D. Lin, I. Ali, S.S. Alhewairini, X. Zheng, G. Chen, J. Li, I. Naz, Recent development of super-wettable materials and their applications in oil-water separation, J. Clean. Prod. 266 (2020) 121624.
    [8] N.A. Ahmad, P.S. Goh, Z. Abdul Karim, A.F. Ismail, Thin Film Composite Membrane for Oily Waste Water Treatment: Recent Advances and Challenges, Membranes 8 (2018) 89.
    [9] B. Doshi, M. Sillanpää, S. Kalliola, A review of bio-based materials for oil spill treatment, Water Res. 135 (2018) 262-277.
    [10] Y. Yang, Z. Ren, S. Zhao, Z. Guo, Robust Superhydrophobic Composite Featuring Three-Dimensional Porous Metal Rubber with an Embedded Carbon Nanofiber Network for Emulsion Separation, Ind. Eng. Chem. Res. 59 (2020) 6172-6182.
    [11] C. Chen, D. Weng, A. Mahmood, S. Chen, J. Wang, Separation Mechanism and Construction of Surfaces with Special Wettability for Oil/Water Separation, ACS Appl. Mater. Interfaces 11 (2019) 11006-11027.
    [12] T.F. Tadros, stability, Emulsion formation, stability, and rheology, John Wiley & Sons, Wokingham, UK, 1 (2013) 1-75.
    [13] T. Yao, W. Jia, X. Tong, Y. Feng, Y. Qi, X. Zhang, J. Wu, One-step preparation of nanobeads-based polypyrrole hydrogel by a reactive-template method and their applications in adsorption and catalysis, J. Colloid. Interface Sci. 527 (2018) 214-221.
    [14] B. Wang, W. Liang, Z. Guo, W. Liu, Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature, Chem. Soc. Rev. 44 (2015) 336-361.
    [15] Y. Guan, F. Cheng, Z. Pan, Superwetting Polymeric Three Dimensional (3D) Porous Materials for Oil/Water Separation: A Review, Polymers 11 (2019) 806.
    [16] Z. Chu, Y. Feng, S. Seeger, Oil/water separation with selective superantiwetting/superwetting surface materials, Angew. Chem. Int. Ed. 54 (2015) 2328-2338.
    [17] W. Abdallah, J.S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, Fundamentals of wettability, Oilfield Rev. 38 (1986) 268.
    [18] T. Ahmed, Chapter 4 - Fundamentals of Rock Properties, Reservoir Engineering Handbook, Fifth Ed., Gulf Professional Publishing , Texas, 2019, pp. 167-281.
    [19] S. Wang, K. Liu, X. Yao, L. Jiang, Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications, Chem. Rev. 115 (2015) 8230-8293.
    [20] L. Gao, T.J. McCarthy, X. Zhang, Wetting and Superhydrophobicity, Langmuir 25 (2009) 14100-14104.
    [21] B. Wang, Y. Zhang, L. Shi, J. Li, Z. Guo, Advances in the theory of superhydrophobic surfaces, J. Mater. Chem. 22 (2012) 20112-20127.
    [22] T. Young, III. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87.
    [23] A. Ahuja, J.A. Taylor, V. Lifton, A.A. Sidorenko, T.R. Salamon, E.J. Lobaton, P. Kolodner, T.N. Krupenkin, Nanonails:  A Simple Geometrical Approach to Electrically Tunable Superlyophobic Surfaces, Langmuir 24 (2008) 9-14.
    [24] Z. Zhu, S. Zheng, S. Peng, Y. Zhao, Y. Tian, Superlyophilic interfaces and their applications, Adv. Mater. 29 (2017) 1703120.
    [25] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Photogeneration of highly amphiphilic TiO2 surfaces, Adv. Mater. 10 (1998) 135-138.
    [26] D. Öner, T.J. McCarthy, Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability, Langmuir 16 (2000) 7777-7782.
    [27] A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, Designing Superoleophobic Surfaces, Science 318 (2007) 1618-1622.
    [28] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces, Nature 388 (1997) 431-432.
    [29] H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, D. Zhu, Super‐“amphiphobic” aligned carbon nanotube films, Angew. Chem. Int. Ed. 40 (2001) 1743-1746.
    [30] T.L. Liu, C.-J.C. Kim, Turning a surface superrepellent even to completely wetting liquids, Science 346 (2014) 1096-1100.
    [31] M. Ghasemlou, F. Daver, E.P. Ivanova, B. Adhikari, Bio-inspired sustainable and durable superhydrophobic materials: from nature to market, J. Mater. Chem. A 7 (2019) 16643-16670.
    [32] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. Res. 28 (1936) 988-994.
    [33] R.N. Wenzel, Surface roughness and contact angle, Am. J. Phys. Chem. 53 (1949) 1466-1467.
    [34] M. Nosonovsky, B. Bhushan, Roughness optimization for biomimetic superhydrophobic surfaces, Microsyst. Technol. 11 (2005) 535-549.
    [35] R.E. Johnson Jr, R.H. Dettre, Contact angle hysteresis. III. Study of an idealized heterogeneous surface, Am. J. Phys. Chem. 68 (1964) 1744-1750.
    [36] R.H. Dettre, R.E. Johnson Jr, Contact angle hysteresis. IV. Contact angle measurements on heterogeneous surfaces, Am. J. Phys. Chem. 69 (1965) 1507-1515.
    [37] M. Ferrari, F. Ravera, S. Rao, L. Liggieri, Surfactant adsorption at superhydrophobic surfaces, Appl. Phys. Lett. 89 (2006) 053104.
    [38] X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Wang, L. Jiang, X. Li, Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters:  Toward Super-Hydrophobic Surface, J. Am. Chem. Soc. 126 (2004) 3064-3065.
    [39] A. Marmur, E. Bittoun, When Wenzel and Cassie Are Right: Reconciling Local and Global Considerations, Langmuir 25 (2009) 1277-1281.
    [40] J. Drelich, E. Chibowski, D.D. Meng, K. Terpilowski, Hydrophilic and superhydrophilic surfaces and materials, Soft Matter 7 (2011) 9804-9828.
    [41] M. Liu, S. Wang, L. Jiang, Nature-inspired superwettability systems, Nat. Rev. Mater. 2 (2017) 17036.
    [42] Y. Si, Z. Dong, L. Jiang, Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials, ACS Cent. Sci. 4 (2018) 1102-1112.
    [43] J. Yong, F. Chen, M. Li, Q. Yang, Y. Fang, J. Huo, X. Hou, Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces, J. Mater. Chem. A 5 (2017) 25249-25257.
    [44] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202 (1997) 1-8.
    [45] C. Neinhuis, W. Barthlott, Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces, Ann. Bot. 79 (1997) 667-677.
    [46] X. J. Feng, L. Jiang, Design and creation of superwetting/antiwetting surfaces, Adv. Mater. 18 (2006) 3063-3078.
    [47] L. Jiang, X.J. Feng, Design and creation of superwetting/antiwetting surfaces, Adv. Mater. 18 (2006) 3063-3078.
    [48] Y. Tian, B. Su, L. Jiang, Interfacial material system exhibiting superwettability, Adv. Mater. 26 (2014) 6872-6897.
    [49] S. Wang, L. Jiang, Definition of superhydrophobic states, Adv. Mater. 19 (2007) 3423-3424.
    [50] T.-G. Cha, J.W. Yi, M.-W. Moon, K.-R. Lee, H.-Y. Kim, Nanoscale Patterning of Microtextured Surfaces to Control Superhydrophobic Robustness, Langmuir 26 (2010) 8319-8326.
    [51] K. Manoharan, S. Bhattacharya, Superhydrophobic surfaces review: Functional application, fabrication techniques and limitations, J. Micro. Nanomanuf. 2 (2019) 59-78.
    [52] G. Wang, A. Li, W. Zhao, Z. Xu, Y. Ma, F. Zhang, Y. Zhang, J. Zhou, Q. He, A Review on Fabrication Methods and Research Progress of Superhydrophobic Silicone Rubber Materials, Adv. Mater. Interfaces 8 (2021) 2001460.
    [53] L. Cao, Superhydrophobic surface: Design, fabrication, and applications, Ph.D Dissertation, University of Pittsburgh, 2011.
    [54] S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, Super Water-Repellent Surfaces Resulting from Fractal Structure, Am. J. Phys. Chem. 100 (1996) 19512-19517.
    [55] H. Puliyalil, G. Filipič, U. Cvelbar, Recent advances in the methods for designing superhydrophobic surfaces, Rijeka, Croatia, (2015) 311-335.
    [56] T. Baldacchini, J.E. Carey, M. Zhou, E. Mazur, Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser, Langmuir 22 (2006) 4917-4919.
    [57] N. Verplanck, E. Galopin, J.-C. Camart, V. Thomy, Y. Coffinier, R. Boukherroub, Reversible Electrowetting on Superhydrophobic Silicon Nanowires, Nano Lett. 7 (2007) 813-817.
    [58] B. Qian, Z. Shen, Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates, Langmuir 21 (2005) 9007-9009.
    [59] N. Zhao, F. Shi, Z. Wang, X. Zhang, Combining Layer-by-Layer Assembly with Electrodeposition of Silver Aggregates for Fabricating Superhydrophobic Surfaces, Langmuir 21 (2005) 4713-4716.
    [60] S. Parvate, P. Dixit, S. Chattopadhyay, Superhydrophobic Surfaces: Insights from Theory and Experiment, J. Phys. Chem. 124 (2020) 1323-1360.
    [61] B.N. Sahoo, B. Kandasubramanian, Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures, RSC Adv. 4 (2014) 22053-22093.
    [62] M. Żenkiewicz, M. Engineering, Methods for the calculation of surface free energy of solids, J. Achiev. Mater. Manuf. 24 (2007) 137-145.
    [63] A. Ulman, Wetting studies of molecularly engineered surfaces, Thin Solid Films 273 (1996) 48-53.
    [64] C.M. Chan, Polymer surface modification and characterization, Carl Hanser, GmbH & Co., Munichen, Germany, 1993.
    [65] D. H. Bangham, R. I. Razouk, Adsorption and the wettability of solid surfaces, J. Chem. Soc. Faraday Trans. 33 (1937) 1459-1463.
    [66] A.W. Neumann, R. David, Y. Zuo, Applied surface thermodynamics, 2nd Ed., CRC press, Hawaii, USA, 2010.
    [67] D. Li, A.W. Neumann, A reformulation of the equation of state for interfacial tensions, J. Colloid. Interface Sci. 137 (1990) 304-307.
    [68] D.Y. Kwok, A.W. Neumann, Contact angle measurement and contact angle interpretation, Adv. Colloid. Interface Sci. 81 (1999) 167-249.
    [69] F.M. Fowkes, E. Chemistry, Attractive forces at interfaces, Ind. Eng. Chem. Res. 56 (1964) 40-52.
    [70] F.M. Fowkes, Donor-acceptor interactions at interfaces, J. Adhes. 4 (1972) 155-159.
    [71] C.J. Van Oss, R.J. Good, M.K. Chaudhury, The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces, J. Colloid. Interface Sci. 111 (1986) 378-390.
    [72] C. J. Van Oss, M.K. Chaudhury, R. J. Good, Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems, Chem. Rev. 88 (1988) 927-941.
    [73] S.-W. Kuo, Hydrogen bonding in polymeric materials, John Wiley & Sons, Weinheim, Germany, 2018.
    [74] P. Atkins, J. Beran, General Chemistry Scientific American Books, New York, 1989.
    [75] C.F. Wang, Y.C. Su, S.W. Kuo, C.F. Huang, Y.C. Sheen, F.C. Chang, Low‐surface‐free‐energy materials based on polybenzoxazines, Angew. Chem. Int. Ed. 118 (2006) 2306-2309.
    [76] S.-W. Kuo, Y.-C. Wu, C.-F. Wang, K.-U. Jeong, Preparing low-surface-energy polymer materials by minimizing intermolecular hydrogen-bonding interactions, J. Phys. Chem. C 113 (2009) 20666-20673.
    [77] C.-F. Wang, D.D. Ejeta, J.-Y. Wu, S.-W. Kuo, C.-H. Lin, J.-Y. Lai, Tuning the Wettability and Surface Free Energy of Poly (vinylphenol) Thin Films by Modulating Hydrogen-Bonding Interactions, Polymers 12 (2020) 523.
    [78] H.-C. Lin, C.-F. Wang, S.-W. Kuo, P.-H. Tung, C.-F. Huang, C.-H. Lin, F.-C. Chang, Effect of intermolecular hydrogen bonding on low-surface-energy material of poly (vinylphenol), J. Phys. Chem. 111 (2007) 3404-3410.
    [79] C.-S. Liao, C.-F. Wang, H.-C. Lin, H.-Y. Chou, F.-C. Chang, Tuning the Surface Free Energy of Polybenzoxazine Thin Films, J. Phys. Chem. C 112 (2008) 16189-16191.
    [80] T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang, D. Zhu, Reversible Switching between Superhydrophilicity and Superhydrophobicity, Angew. Chem. Int. Ed. 43 (2004) 357-360.
    [81] S.R. Coulson, I. Woodward, J.P.S. Badyal, S.A. Brewer, C. Willis, Super-Repellent Composite Fluoropolymer Surfaces, J. Phys. Chem. 104 (2000) 8836-8840.
    [82] M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, L. Jiang, Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force, Macromol. Rapid Commun. 26 (2005) 1805-1809.
    [83] H. Hillborg, N. Tomczak, A. Olàh, H. Schönherr, G.J. Vancso, Nanoscale Hydrophobic Recovery:  A Chemical Force Microscopy Study of UV/Ozone-Treated Cross-Linked Poly(dimethylsiloxane), Langmuir 20 (2004) 785-794.
    [84] L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang, D. Zhu, A super‐hydrophobic and super‐oleophilic coating mesh film for the separation of oil and water, Angew. Chem. Int. Ed. 116 (2004) 2046-2048.
    [85] K. Manoharan, S. Bhattacharya, Superhydrophobic surfaces review: Functional application, fabrication techniques and limitations, J. Micro. Nanomanuf. 2 (2019) 59-78.
    [86] D. Anton, Surface-Fluorinated Coatings, Adv. Mater. 10 (1998) 1197-1205.
    [87] H.-D. Kim, H. Ishida, A study on hydrogen bonding in controlled-structure benzoxazine model oligomers, Macromolecules 195 (2003) 123-140.
    [88] H.-D. Kim, H. Ishida, A Study on Hydrogen-Bonded Network Structure of Polybenzoxazines, J. Phys. Chem. 106 (2002) 3271-3280.
    [89] D.D. Ejeta, F.H. Tan, A. Mathivathanan, T.-Y. Juang, M.M. Abu-Omar, C.F. Wang, C.-H. Lin, J.-Y.J.W.S. Lai, Preparation of Fluorine-and Nanoparticle-Free Superwetting Cellulose Composites Via Modifying with Main-Chain-Type Furan-Based Polybenzoxazines for Efficient Oil/Water Separations, unpublished article.
    [90] H. Ishida, T. Agag, Handbook of benzoxazine resins, 2nd Ed., Elsevier, Oxford, 2011.
    [91] J.M. Nasrullah, S. Raja, K. Vijayakumaran, R. Dhamodharan, A practical route for the preparation of poly(4-hydroxystyrene), a useful photoresist material, J. Polym. Sci. 38 (2000) 453-461.
    [92] S. Nakahama, A. Hirao, Protection and polymerization of functional monomers: Anionic living polymerization of protected monomers, Prog. Polym. Sci. 15 (1990) 299-335.
    [93] C.J. Simpson, M.J. Fitzhenry, N.P.J. Stamford, Preparation of vinylphenols from 2- and 4-hydroxybenzaldehydes, Tetrahedron Lett. 46 (2005) 6893-6896.
    [94] R. Sovish, Preparation and polymerization of p-vinylphenol, J. Org. Chem. 24 (1959) 1345-1347.
    [95] A.K. Sinha, A. Sharma, B.P. Joshi, One-pot two-step synthesis of 4-vinylphenols from 4-hydroxy substituted benzaldehydes under microwave irradiation: a new perspective on the classical Knoevenagel–Doebner reaction, Tetrahedron 63 (2007) 960-965.
    [96] G.G. Barclay, C.J. Hawker, H. Ito, A. Orellana, P.R.L. Malenfant, R.F. Sinta, The “Living” Free Radical Synthesis of Poly(4-hydroxystyrene):  Physical Properties and Dissolution Behavior, Macromolecules 31 (1998) 1024-1031.
    [97] M.K. Georges, R.P. Veregin, P.M. Kazmaier, G.K. Hamer, Narrow molecular weight resins by a free-radical polymerization process, Macromolecules 26 (1993) 2987-2988.
    [98] W.J. Dale, H.E. Hennis, Substituted Styrenes. III. The Syntheses and Some Chemical Properties of the Vinylphenols, J. Am. Chem. Soc. 80 (1958) 3645-3649.
    [99] J.M.J. Fréchet, E. Eichler, H. Ito, C.G. Willson, Poly(p-tert-butoxycarbonyloxystyrene): a convenient precursor to p-hydroxystyrene resins, Polymer 24 (1983) 995-1000.
    [100] W. Zhao, S.L. Hsu, S. Ravichandran, A.M. Bonner, Moisture Effects on the Physical Properties of Cross-linked Phenolic Resins, Macromolecules 52 (2019) 3367-3375.
    [101] A. Izumi, Y. Shudo, T. Nakao, M. Shibayama, Cross-link inhomogeneity in phenolic resins at the initial stage of curing studied by 1H-pulse NMR spectroscopy and complementary SAXS/WAXS and SANS/WANS with a solvent-swelling technique, Polymer 103 (2016) 152-162.
    [102] Q. Wen, Z.J.C.L. Guo, Recent advances in the fabrication of superhydrophobic surfaces, Chem. Lett. 45 (2016) 1134-1149.
    [103] S. Das, S. Kumar, S.K. Samal, S. Mohanty, S.K. Nayak, A Review on Superhydrophobic Polymer Nanocoatings: Recent Development and Applications, Ind. Eng. Chem. Res. 57 (2018) 2727-2745.
    [104] J. Jeevahan, M. Chandrasekaran, G. Britto Joseph, R.B. Durairaj, G. Mageshwaran, Superhydrophobic surfaces: a review on fundamentals, applications, and challenges, J. Coat. Technol. Res. 15 (2018) 231-250.
    [105] T. Tadros, P. Izquierdo, J. Esquena, C. Solans, Formation and stability of nano-emulsions, Adv. Colloid Interface Sci. 108-109 (2004) 303-318.
    [106] F. Goodarzi, S. Zendehboudi, A comprehensive review on emulsions and emulsion stability in chemical and energy industries, Can. J. Chem. Eng. 97 (2019) 281-309.
    [107] N.H. Che Marzuki, R.A. Wahab, M.J.B. Abdul Hamid, B. Equipment, An overview of nanoemulsion: concepts of development and cosmeceutical applications, Biotechnol. Biotechnol. Equip. 33 (2019) 779-797.
    [108] Y. Si, Z. Guo, Superwetting materials of oil–water emulsion separation, Chem. Lett. 44 (2015) 874-883.
    [109] S.M. Niknam, I. Escudero, J.M. Benito, Formulation and Preparation of Water-In-Oil-In-Water Emulsions Loaded with a Phenolic-Rich Inner Aqueous Phase by Application of High Energy Emulsification Methods, Foods 9 (2020).
    [110] Y. Yuan, Y. Gao, J. Zhao, L. Mao, Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions, Int. Food Res. J. 41 (2008) 61-68.
    [111] M. Cheryan, N. Rajagopalan, Membrane processing of oily streams. Wastewater treatment and waste reduction, J. Membr. Sci. 151 (1998) 13-28.
    [112] M. Fingas, Chapter 23 - An Overview of In-Situ Burning, in: M. Fingas (Ed.), Oil Spill Science and Technology, Gulf Professional Publishing, Boston, 2011, 737-903.
    [113] L.J. Graham, C. Hale, E. Maung-Douglass, S. Sempier, L. Swann, M. Wilson, Chemical dispersants and their role in oil spill response, Gulf of Mexico Research Initiative, 2016.
    [114] C.C. Azubuike, C.B. Chikere, G.C. Okpokwasili, Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects, World J. Microbiol. Biotechnol. 32 (2016) 180.
    [115] J.V. Mullin, M.A. Champ, Introduction/Overview to In Situ Burning of Oil Spills, Spill Sci. Technol. Bull. 8 (2003) 323-330.
    [116] A.O. Ifelebuegu, A. Johnson, Nonconventional low-cost cellulose- and keratin-based biopolymeric sorbents for oil/water separation and spill cleanup: A review, Crit. Rev. Environ. Sci. Technol. 47 (2017) 964-1001.
    [117] S. Sabir, Approach of Cost-Effective Adsorbents for Oil Removal from Oily Water, Crit. Rev. Environ. Sci. Technol. 45 (2015) 1916-1945.
    [118] Z. Xue, Y. Cao, N. Liu, L. Feng, L. Jiang, Special wettable materials for oil/water separation, J. Mater. Chem. A 2 (2014) 2445-2460.
    [119] Z. Jihao, C. Jiahui, W. Xiufang, X. Shoupin, P. Pihui, Advanced materials for separation of oil/water emulsion, Prog. Chem. 31 (2019) 1440.
    [120] R.W. Baker, Membrane technology and applications, John Wiley & Sons, 2nd Ed., California, 2012.
    [121] L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang, D. Zhu, A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water, Angew. Chem. Int. Ed. 43 (2004) 2012-2014.
    [122] F. Li, Z. Wang, S. Huang, Y. Pan, X. Zhao, Flexible, Durable, and Unconditioned Superoleophobic/Superhydrophilic Surfaces for Controllable Transport and Oil–Water Separation, Adv. Funct. Mater. 28 (2018) 1706867.
    [123] Y. Cai, S. Li, Z. Cheng, G. Xu, X. Quan, Y. Zhou, Facile fabrication of super-hydrophobic FAS modified electroless Ni-P coating meshes for rapid water-oil separation, Colloids Surf. A Physicochem. Eng. Asp. 540 (2018) 224-232.
    [124] X.Q. Cheng, Y. Jiao, Z. Sun, X. Yang, Z. Cheng, Q. Bai, Y. Zhang, K. Wang, L. Shao, Constructing Scalable Superhydrophobic Membranes for Ultrafast Water–Oil Separation, ACS Nano 15 (2021) 3500-3508.
    [125] R.W. Baker, applications, Overview of membrane science and technology, John Wiley & Sons, 2nd Ed., California, 3 (2004) 1-14.
    [126] Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, L. Jiang, Ultrafast Separation of Emulsified Oil/Water Mixtures by Ultrathin Free-Standing Single-Walled Carbon Nanotube Network Films, Adv. Mater. 25 (2013) 2422-2427.
    [127] S. Agarwal, V. von Arnim, T. Stegmaier, H. Planck, A. Agarwal, Role of surface wettability and roughness in emulsion separation, Sep. Purif. Technol. 107 (2013) 19-25.
    [128] Y. Kagawa, T. Ishigami, K. Hayashi, H. Fuse, Y. Mino, H. Matsuyama, Permeation of concentrated oil-in-water emulsions through a membrane pore: numerical simulation using a coupled level set and the volume-of-fluid method, Soft Matter 10 (2014) 7985-7992.
    [129] B.R. Solomon, M.N. Hyder, K.K. Varanasi, Separating Oil-Water Nanoemulsions using Flux-Enhanced Hierarchical Membranes, Sci. Rep. 4 (2014) 5504.
    [130] Y. Si, Z. Guo, Superwetting Materials of Oil–Water Emulsion Separation, Chem. Lett. 44 (2015) 874-883.
    [131] Y. Li, L. Cao, D. Hu, C. Yang, Uncommon wetting on a special coating and its relevance to coalescence separation of emulsified water from diesel fuel, Sep. Purif. Technol. 176 (2017) 313-322.
    [132] S. Ma, Y. Kang, S. Cui, Oil and Water Separation Using a Glass Microfiber Coalescing Bed, J. Dispers. Sci. Technol. 35 (2014) 103-110.
    [133] Q. Han, Y. Kang, Separation of water-in-oil emulsion with microfiber glass coalescing bed, J. Dispers. Sci. Technol. 38 (2017) 1523-1529.
    [134] M. Turalija, T. Bechtold, Printing of reactive silicones for surface modification of textile material, J. Appl. Polym. Sci. 132 (2015) 42594.
    [135] J. Kozakiewicz, I. Ofat, J. Trzaskowska, Silicone-containing aqueous polymer dispersions with hybrid particle structure, Adv. Colloid Interface Sci. 223 (2015) 1-39.
    [136] K. Li, X. Zeng, H. Li, X. Lai, H. Xie, Facile fabrication of superhydrophobic filtration fabric with honeycomb structures for the separation of water and oil, Mater. Lett. 120 (2014) 255-258.
    [137] V. Hughes, Aviation fuel handling: New mechanism insight into the effect of surfactants on water coalescer performance, 2nd International Filtration Conference, San Antonio, April, 1997, 1993-1995.
    [138] J.F. Bitten, Coalescence of water droplets on single fibers, J. Colloid Interface Sci. 33 (1970) 265-271.
    [139] X. Zeng, L. Qian, X. Yuan, C. Zhou, Z. Li, J. Cheng, S. Xu, S. Wang, P. Pi, X. Wen, Inspired by Stenocara Beetles: From Water Collection to High-Efficiency Water-in-Oil Emulsion Separation, ACS Nano 11 (2017) 760-769.
    [140] J.H. Lee, D.H. Kim, Y.D. Kim, High-performance, recyclable and superhydrophobic oil absorbents consisting of cotton with a polydimethylsiloxane shell, J. Ind. Eng. Chem. 35 (2016) 140-145.
    [141] N. Lv, X. Wang, S. Peng, L. Luo, R. Zhou, Superhydrophobic/superoleophilic cotton-oil absorbent: preparation and its application in oil/water separation, RSC Adv. 8 (2018) 30257-30264.
    [142] L. Liu, Y. Pan, B. Bhushan, X. Zhao, Mechanochemical robust, magnetic-driven, superhydrophobic 3D porous materials for contaminated oil recovery, J. Colloid Interface Sci. 538 (2019) 25-33.
    [143] J. Wang, S. Liu, Remodeling of raw cotton fiber into flexible, squeezing-resistant macroporous cellulose aerogel with high oil retention capability for oil/water separation, Sep. Purif. Technol. 221 (2019) 303-310.
    [144] Q. Wang, J. Wu, G. Meng, Y. Wang, Z. Liu, X. Guo, Preparation of novel cotton fabric composites with pH controlled switchable wettability for efficient water-in-oil and oil-in-water emulsions separation, Appl. Phys. A 124 (2018) 422.
    [145] C.P.R. Nair, Advances in addition-cure phenolic resins, Prog. Polym. Sci. 29 (2004) 401-498.
    [146] L.-H. Lee, Adhesion and adsorption of polymers, Springer Science & Business Media, New York, 2012.
    [147] R. Yang, Analytical methods for polymer characterization, CRC Press, 1st Ed., New York, 2018.
    [148] C. Chung, M. Lee, E.K. Choe, Characterization of cotton fabric scouring by FT-IR ATR spectroscopy, Carbohydr. Polym. 58 (2004) 417-420.
    [149] Y. Zhang, L. Shao, D. Dong, Y. Wang, Enhancement of water and organic solvent resistances of a waterborne polyurethane film by incorporating liquid polysulfide, RSC Adv. 6 (2016) 17163-17171.
    [150] M. Yan, B. Harnish, A simple method for the attachment of polymer films on solid substrates, Adv Mater. 15 (2003) 244-248.
    [151] S. Uppalapati, N. Kong, O. Norberg, O. Ramström, M. Yan, Ionization of covalent immobilized poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR, Appl. Surf. Sci. 343 (2015) 166-171.
    [152] S. Uppalapati, S. Chada, M.H. Engelhard, M. Yan, Physics, Photochemical Reactions of Poly (4‐vinylphenol) Thin Films, Macromol. Chem. Phys. 211 (2010) 461-470.
    [153] C.-F. Wang, L.-T. Chen, Preparation of Superwetting Porous Materials for Ultrafast Separation of Water-in-Oil Emulsions, Langmuir 33 (2017) 1969-1973.
    [154] X. Yue, W. Li, Z. Li, F. Qiu, J. Pan, T. Zhang, Laminated superwetting aerogel/membrane composite with large pore sizes for efficient separation of surfactant-stabilized water-in-oil emulsions, Chem. Eng. Sci. 215 (2020) 115450.
    [155] Z. Chu, S. Seeger, Multifunctional Hybrid Porous Micro‐/Nanocomposite Materials, Adv. Mater. 27(47) (2015) 7775-7781.
    [156] L. Hu, S. Gao, Y. Zhu, F. Zhang, L. Jiang, J. Jin, An ultrathin bilayer membrane with asymmetric wettability for pressure responsive oil/water emulsion separation, J. Mater. Chem. A 3 (2015) 23477-23482.
    [157] X. Han, J. Hu, K. Chen, P. Wang, G. Zhang, J. Gu, C. Ding, X. Zheng, F. Cao, Self-assembly and epitaxial growth of multifunctional micro-nano-spheres for effective separation of water-in-oil emulsions with ultra-high flux, Chem. Eng. J. 352 (2018) 530-538.
    [158] W. Deng, M. Long, Q. Zhou, N. Wen, W. Deng, One-step preparation of superhydrophobic acrylonitrile-butadiene-styrene copolymer coating for ultrafast separation of water-in-oil emulsions, J. Colloid Interface Sci. 511 (2018) 21-26.
    [159] Z. Wang, C. Xiao, Z. Wu, Y. Wang, X. Du, W. Kong, D. Pan, G. Guan, X. Hao, A novel 3D porous modified material with cage-like structure: fabrication and its demulsification effect for efficient oil/water separation, J. Mater. Chem. A 5 (2017) 5895-5904.
    [160] C. Wei, F. Dai, L. Lin, Z. An, Y. He, X. Chen, L. Chen, Y. Zhao, Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation, J. Membr. Sci. 555 (2018) 220-228.
    [161] J. Gu, P. Xiao, Y. Huang, J. Zhang, T. Chen, Controlled functionalization of carbon nanotubes as superhydrophobic material for adjustable oil/water separation, J. Mater. Chem. A 3 (2015) 4124-4128.
    [162] X. Yue, W. Li, Z. Li, F. Qiu, J. Pan, T. Zhang, Laminated superwetting aerogel/membrane composite with large pore sizes for efficient separation of surfactant-stabilized water-in-oil emulsions, Chem. Eng. Sci. 215 (2019) 115450.
    [163] W. Zhang, Y. Zhu, X. Liu, D. Wang, J. Li, L. Jiang, J. Jin, Salt-Induced Fabrication of Superhydrophilic and Underwater Superoleophobic PAA-g-PVDF Membranes for Effective Separation of Oil-in-Water Emulsions, Angew. Chem. Int. Ed. 53 (2014) 856-860.
    [164] X. Li, H. Shan, M. Cao, B. Li, Mussel-inspired modification of PTFE membranes in a miscible THF-Tris buffer mixture for oil-in-water emulsions separation, J. Membr. Sci. 555 (2018) 237-249.
    [165] Y. Zhu, W. Xie, F. Zhang, T. Xing, J. Jin, Superhydrophilic In-Situ-Cross-Linked Zwitterionic Polyelectrolyte/PVDF-Blend Membrane for Highly Efficient Oil/Water Emulsion Separation, ACS Appl. Mater. Interfaces 9 (2017) 9603-9613.
    [166] M.O. Adebajo, R.L. Frost, J.T. Kloprogge, O. Carmody, S. Kokot, Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties, J. Porous Mater. 10 (2003) 159-170.
    [167] C.-F. Wang, Y.-J. Tsai, S.-W. Kuo, K.-J. Lee, C.-C. Hu, J.-Y. Lai, Toward Superhydrophobic/Superoleophilic Materials for Separation of Oil/Water Mixtures and Water-in-Oil Emulsions Using Phase Inversion Methods, Coatings 8 (2018) 396.
    [168] M. Li, C. Bian, G. Yang, X. Qiang, Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion, Chem. Eng. J. 368 (2019) 350-358.
    [169] Y. Li, Z. Zhang, M. Wang, X. Men, Q. Xue, One-pot fabrication of nanoporous polymer decorated materials: from oil-collecting devices to high-efficiency emulsion separation, J. Mater. Chem. A 5 (2017) 5077-5087.
    [170] S. Gao, X. Dong, J. Huang, S. Li, Y. Li, Z. Chen, Y. Lai, Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation, Chem. Eng. J. 333 (2018) 621-629.
    [171] C.H. Lin, S.L. Chang, T.Y. Shen, Y.S. Shih, H.T. Lin, C.F. Wang, Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies, Polym. Chem. 3 (2012) 935-945.
    [172] C.-T. Liu, P.-K. Su, C.-C. Hu, J.-Y. Lai, Y.-L. Liu, Surface modification of porous substrates for oil/water separation using crosslinkable polybenzoxazine as an agent, J. Membr. Sci. 546 (2018) 100-109.
    [173] A. Ručigaj, B. Alič, M. Krajnc, U. Šebenik, Curing of bisphenol A-aniline based benzoxazine using phenolic, amino and mercapto accelerators, Express Polym. Lett. 9 (2015) 647-657.
    [174] C.F. Wang, Y.C. Su, S.W. Kuo, C.F. Huang, Y.C. Sheen, F.C. Chang, Low‐surface‐free‐energy materials based on polybenzoxazines, Angew. Chem. Int. Ed. 45 (2006) 2248-2251.
    [175] Y. Zhu, L. Pei, J. Ambreen, C. He, T. Ngai, Physics, Facile Preparation of a Fluorine‐Free, Robust, Superhydrophobic Coating through Dip Coating Combined with Non‐Solvent Induced Phase Separation (Dip‐Coating‐NIPS) Method, Macromol. Chem. Phys. 221 (2020) 2000023.
    [176] S. Gao, X. Dong, J. Huang, J. Dong, Y. Cheng, Z. Chen, Y. Lai, Co-solvent induced self-roughness superhydrophobic coatings with self-healing property for versatile oil-water separation, Appl. Surf. Sci. 459 (2018) 512-519.
    [177] G.R. Guillen, Y. Pan, M. Li, E. Hoek, Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review, Ind. Eng. Chem. Res. 50 (2011) 3798-3817.
    [178] L. Brockway, L. Berryman, H. Taylor, Nonsolvent-induced phase separation synthesis of superhydrophobic coatings composed of polyvinylidene difluoride microspheres with tunable size and roughness, Prog. Org. Coat. 119 (2018) 230-238.
    [179] S.K. Hubadillah, Z. Harun, M.H.D. Othman, A.F. Ismail, W.N.W. Salleh, H. Basri, M.Z. Yunos, P. Gani, Preparation and characterization of low cost porous ceramic membrane support from kaolin using phase inversion/sintering technique for gas separation: Effect of kaolin content and non-solvent coagulant bath, Chem. Eng. Res. Des. 112 (2016) 24-35.
    [180] S. Ashtiani, M. Khoshnamvand, P. Číhal, M. Dendisová, A. Randová, D. Bouša, A. Shaliutina-Kolešová, Z. Sofer, K. Friess, Fabrication of a PVDF membrane with tailored morphology and properties via exploring and computing its ternary phase diagram for wastewater treatment and gas separation applications, RSC Adv. 10 (2020) 40373-40383.
    [181] H. Zhou, H. Wang, H. Niu, Y. Zhao, Z. Xu, T. Lin, A waterborne coating system for preparing robust, self‐healing, superamphiphobic surfaces, Adv. Funct. Mater. 27 (2017) 1604261.
    [182] I. Hamerton, L.T. McNamara, B.J. Howlin, P.A. Smith, P. Cross, S. Ward, Examining the Initiation of the Polymerization Mechanism and Network Development in Aromatic Polybenzoxazines, Macromolecules 46 (2013) 5117-5132.
    [183] C.-F. Wang, Y.-T. Wang, P.-H. Tung, S.-W. Kuo, C.-H. Lin, Y.-C. Sheen, F.-C. Chang, Stable Superhydrophobic Polybenzoxazine Surfaces over a Wide pH Range, Langmuir 22 (2006) 8289-8292.
    [184] C.-S. Liao, C.-F. Wang, H.-C. Lin, H.-Y. Chou, F.-C. Chang, Fabrication of Patterned Superhydrophobic Polybenzoxazine Hybrid Surfaces, Langmuir 25 (2009) 3359-3362.
    [185] H. Zhu, S. Yang, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, A robust absorbent material based on light‐responsive superhydrophobic melamine sponge for oil recovery, Adv. Mater. 3 (2016) 1500683.
    [186] H.D. Kim, H. Ishida, Study on the chemical stability of benzoxazine‐based phenolic resins in carboxylic acids, J. Appl. Polym. Sci. 79 (2001) 1207-1219.
    [187] J.A. Macko, H. Ishida, Behavior of a bisphenol‐A‐based polybenzoxazine exposed to ultraviolet radiation, J. Appl. Polym. Sci. 38 (2000) 2687-2701.
    [188] C.-F. Wang, T.-F. Wang, C.-S. Liao, S.-W. Kuo, H.-C. Lin, Using Pencil Drawing To Pattern Robust Superhydrophobic Surfaces To Control the Mobility of Water Droplets, J. Phys. Chem. C 115 (2011) 16495-16500.
    [189] X. Zhao, L. Li, B. Li, J. Zhang, A. Wang, Durable superhydrophobic/superoleophilic PDMS sponges and their applications in selective oil absorption and in plugging oil leakages, J. Mater. Chem. A 2 (2014) 18281-18287.
    [190] S. Yun, H. Luo, Y. Gao, Superhydrophobic silica aerogel microspheres from methyltrimethoxysilane: rapid synthesis via ambient pressure drying and excellent absorption properties, RSC Adv. 4 (2014) 4535-4542.
    [191] W. Zhang, X. Zhai, T. Xiang, M. Zhou, D. Zang, Z. Gao, C. Wang, Superhydrophobic melamine sponge with excellent surface selectivity and fire retardancy for oil absorption, J. Mater. Sci. 52 (2017) 73-85.
    [192] J. Ge, F. Wang, X. Yin, J. Yu, B. Ding, interfaces, Polybenzoxazine-functionalized melamine sponges with enhanced selective capillarity for efficient oil spill cleanup, ACS Appl. Mater. Interfaces 10 (2018) 40274-40285.
    [193] Y. Peng, Y. Liu, J. Dai, L. Cao, X. Liu, A sustainable strategy for remediation of oily sewage: Clean and safe, Sep. Purif. Technol. 240 (2020) 116592.
    [194] Y. Peng, J. Dai, Y. Liu, L. Cao, J. Zhu, X. Liu, Bio‐Based Polybenzoxazine Modified Melamine Sponges for Selective Absorption of Organic Solvent in Water, Adv. Sustain. Syst. 3 (2019) 1800126.
    [195] Y. Qin, S. Li, Y. Li, F. Pan, L. Han, Z. Chen, X. Yin, L. Wang, H. Wang, Mechanically robust polybenzoxazine/reduced graphene oxide wrapped-cellulose sponge towards highly efficient oil/water separation, and solar-driven for cleaning up crude oil, Compos. Sci. Technol. 197 (2020) 108254.
    [196] B.K. Kaang, Y.S. Lee, N. Han, W.S. Choi, A potential amphiprotic sponge with a controlled release characteristic of protons on demand for oil/water separation and acid/base neutralization, Adv. Mater. Interfaces 6 (2019) 1900004.
    [197] M. Huang, Y. Si, X. Tang, Z. Zhu, B. Ding, L. Liu, G. Zheng, W. Luo, J. Yu, Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes, J. Mater. Chem. A 1 (2013) 14071-14074.
    [198] M. Arshadi, M. Azizi, H. Souzandeh, C. Tan, S.M. Davachi, A. Abbaspourrad, Robust, sustainable and multifunctional nanofibers with smart switchability for water-in-oil and oil-in-water emulsion separation and liquid marble preparation, J. Mater. Chem. A 7 (2019) 26456-26468.
    [199] J. Ren, F. Tao, L. Liu, X. Wang, Y. Cui, A novel TiO2@stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation, Carbohydr. Polym. 232 (2020) 115807.
    [200] J. Zhang, J. Zhao, W. Qu, X. Li, Z. Wang, One-step, low-cost, mussel-inspired green method to prepare superhydrophobic nanostructured surfaces having durability, efficiency, and wide applicability, J. Colloid Interface Sci. 580 (2020) 211-222.
    [201] J. Yong, F. Chen, Q. Yang, H. Bian, G. Du, C. Shan, J. Huo, Y. Fang, X. Hou, Oil‐water separation: a gift from the desert, Adv. Mater. Interfaces 3 (2016) 1500650.
    [202] J. Li, C. Xu, C. Guo, H. Tian, F. Zha, L. Guo, Underoil superhydrophilic desert sand layer for efficient gravity-directed water-in-oil emulsions separation with high flux, J. Mater. Chem. A 6 (2018) 223-230.
    [203] B. Wang, A. Mahmood, L. Chen, D. Weng, C. Wang, C. Chen, Z. Li, J. Wang, Under-oil superhydrophilic salt particle filter for the efficient separation of water-in-oil emulsions, Chem. Commun. 56 (2020) 11585-11588.
    [204] C. Chen, S. Chen, L. Chen, Y. Yu, D. Weng, A. Mahmood, J. Wang, I.P. Parkin, C.J. Carmalt, Underoil Superhydrophilic Metal Felt Fabricated by Modifying Ultrathin Fumed Silica Coatings for the Separation of Water-in-Oil Emulsions, ACS Appl. Mater. Interfaces 12 (2020) 27663-27671.
    [205] H. Liu, S.-W. Gao, J.-S. Cai, C.-L. He, J.-J. Mao, T.-X. Zhu, Z. Chen, J.-Y. Huang, K. Meng, K.-Q. Zhang, S.S. Al-Deyab, Y.-K. Lai, Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates, Materials 9 (2016) 124.
    [206] X. Zhang, M.G. Looney, D.H. Solomon, A.K. Whittaker, The chemistry of novolac resins: 13C and 15N N.M.R. studies of curing with hexamethylenetetramine, Polymer 38 (1997) 5835-5848.
    [207] X. Zhang, D.H. Solomon, The chemistry of novolac resins - VI. Reactions between benzoxazine intermediates and model phenols, Polymer 39 (1998) 405-412.
    [208] H. Okada, T. Tokunaga, X. Liu, S. Takayanagi, A. Matsushima, Y. Shimohigashi, Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-γ, Environ. Health Perspect. 116 (2008) 32-38.
    [209] H.-J. Lehmler, B. Liu, M. Gadogbe, W. Bao, Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013–2014, ACS Omega 3 (2018) 6523-6532.
    [210] S.A. Baluka, W.K. Rumbeiha, Bisphenol A and food safety: Lessons from developed to developing countries, Food Chem. Toxicol. 92 (2016) 58-63.
    [211] J. Liu, H. Ishida, Anomalous Isomeric Effect on the Properties of Bisphenol F-based Benzoxazines: Toward the Molecular Design for Higher Performance, Macromolecules 47 (2014) 5682-5690.
    [212] T. Agag, T. Takeichi, Effect of Hydroxyphenylmaleimide on the Curing Behaviour and Thermomechanical Properties of Rubber-Modified Polybenzoxazine, High Perform. Polym. 13 (2001) S327-S342.
    [213] Y. Deng, D. Han, Y.-Y. Deng, Q. Zhang, F. Chen, Q. Fu, Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation, Chem. Eng. J. 379 (2020) 122391.
    [214] Y. Fu, B. Jin, Q. Zhang, X. Zhan, F. Chen, pH-Induced Switchable Superwettability of Efficient Antibacterial Fabrics for Durable Selective Oil/Water Separation, ACS Appl. Mater. Interfaces 9 (2017) 30161-30170.
    [215] X. Zhou, Z. Zhang, X. Xu, F. Guo, X. Zhu, X. Men, B. Ge, interfaces, Robust and durable superhydrophobic cotton fabrics for oil/water separation, ACS Appl. Mater. Interfaces 5 (2013) 7208-7214.
    [216] G. Cao, W. Zhang, Z. Jia, F. Liu, H. Yang, Q. Yu, Y. Wang, X. Di, C. Wang, S.-H. Ho, Dually Prewetted Underwater Superoleophobic and under Oil Superhydrophobic Fabric for Successive Separation of Light Oil/Water/Heavy Oil Three-Phase Mixtures, ACS Appl. Mater. Interfaces 9 (2017) 36368-36376.
    [217] S. Joshi, H. Kathuria, S. Verma, S. Valiyaveettil, Functional Catechol–Metal Polymers via Interfacial Polymerization for Applications in Water Purification, ACS Appl. Mater. Interfaces 12 (2020) 19044-19053.
    [218] Q. Shang, C. Liu, J. Chen, X. Yang, Y. Hu, L. Hu, Y. Zhou, X. Ren, Sustainable and Robust Superhydrophobic Cotton Fabrics Coated with Castor Oil-Based Nanocomposites for Effective Oil–Water Separation, ACS Sustain. Chem. Eng. 8 (2020) 7423-7435.
    [219] Q.-Y. Cheng, X.-P. An, Y.-D. Li, C.-L. Huang, J.-B. Zeng, Sustainable and Biodegradable Superhydrophobic Coating from Epoxidized Soybean Oil and ZnO Nanoparticles on Cellulosic Substrates for Efficient Oil/Water Separation, ACS Sustain. Chem. Eng. 5 (2017) 11440-11450.
    [220] Q.-Y. Cheng, X.-L. Zhao, Y.-X. Weng, Y.-D. Li, J.-B. Zeng, Fully Sustainable, Nanoparticle-Free, Fluorine-Free, and Robust Superhydrophobic Cotton Fabric Fabricated via an Eco-Friendly Method for Efficient Oil/Water Separation, ACS Sustain. Chem. Eng. 7 (2019) 15696-15705.
    [221] Q.-Y. Cheng, C.-S. Guan, M. Wang, Y.-D. Li, J.-B. Zeng, Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation, Carbohydr. Polym. 199 (2018) 390-396.
    [222] J. Chen, Y. Zhou, C. Zhou, X. Wen, S. Xu, J. Cheng, P. Pi, A durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separation, Chem. Eng. J. 370 (2019) 1218-1227.
    [223] Z. Mai, X. Shu, G. Li, D. Chen, M. Liu, W. Xu, H. Zhang, One-step fabrication of flexible, durable and fluorine-free superhydrophobic cotton fabrics for efficient oil/water separation, Cellulose 26 (2019) 6349-6363.
    [224] M. Yang, W. Liu, L. Liang, C. Jiang, C. Liu, Y. Xie, H. Shi, F. Zhang, K. Pi, A mild strategy to construct superhydrophobic cotton with dual self-cleaning and oil–water separation abilities based on TiO2 and POSS via thiol-ene click reaction, Cellulose 27 (2020) 2847-2857.
    [225] X. Yan, X. Zhu, Y. Ruan, T. Xing, G. Chen, C. Zhou, Biomimetic, dopamine-modified superhydrophobic cotton fabric for oil–water separation, Cellulose 27 (2020) 7873-7885.
    [226] W. Ji, H. Wang, Y. Yao, R. Wang, Mg(OH)2 and PDMS-coated cotton fabrics for excellent oil/water separation and flame retardancy, Cellulose 26 (2019) 6879-6890.
    [227] Y. Li, Q. Yu, X. Yin, J. Xu, Y. Cai, L. Han, H. Huang, Y. Zhou, Y. Tan, L. Wang, H. Wang, Fabrication of superhydrophobic and superoleophilic polybenzoxazine-based cotton fabric for oil–water separation, Cellulose 25 (2018) 6691-6704.
    [228] Q.-Y. Cheng, X.-L. Zhao, Y.-D. Li, Y.-X. Weng, J.-B. Zeng, Robust and nanoparticle-free superhydrophobic cotton fabric fabricated from all biological resources for oil/water separation, International Journal of Biological Macromolecules 140 (2019) 1175-1182.
    [229] P.M. Gore, B. Kandasubramanian, Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil–water separation, J. Mater. Chem. A 6 (2018) 7457-7479.
    [230] Q.-Y. Cheng, M.-C. Liu, Y.-D. Li, J. Zhu, A.-K. Du, J.-B. Zeng, Biobased super-hydrophobic coating on cotton fabric fabricated by spray-coating for efficient oil/water separation, Polym. Test. 66 (2018) 41-47.
    [231] W. Bai, H. Lin, K. Chen, J. Xu, J. Chen, X. Zhang, R. Zeng, J. Lin, Y. Xu, Eco-friendly stable cardanol-based benzoxazine modified superhydrophobic cotton fabrics for oil–water separation, Sep. Purif. Technol. 253 (2020) 117545.
    [232] D. Daksa Ejeta, C.-F. Wang, S.-W. Kuo, J.-K. Chen, H.-C. Tsai, W.-S. Hung, C.-C. Hu, J.-Y. Lai, Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation, Chem. Eng. J. 402 (2020) 126289.
    [233] T. Yan, X. Chen, T. Zhang, J. Yu, X. Jiang, W. Hu, F. Jiao, A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation, Chem. Eng. J. 347 (2018) 52-63.
    [234] S. Lei, M. Zeng, D. Huang, L. Wang, L. Zhang, B. Xi, W. Ma, G. Chen, Z. Cheng, Synergistic High-flux Oil–Saltwater Separation and Membrane Desalination with Carbon Quantum Dots Functionalized Membrane, ACS Sust. Chem. Eng. 7 (2019) 13708-13716.
    [235] F. Li, Z. Wang, Y. Pan, X. Zhao, A facile and effective method to fabricate superhydrophobic/superoeophilic surface for the separation of both water/oil mixtures and water-in-oil emulsions, Polymers 9 (2017) 563.
    [236] D.D. Ejeta, C.-F. Wang, C.-H. Lin, S.-W. Kuo, J.-K. Chen, H.-C. Tsai, W.-S. Hung, C.-C. Hu, J.-Y. Lai, Preparation of a main-chain-type polybenzoxazine-modified melamine sponge via non-solvent-induced phase inversion for oil absorption and very-high-flux separation of water-in-oil emulsions, Sep. Purif. Technol. 263 (2021) 118387.

    QR CODE