簡易檢索 / 詳目顯示

研究生: 簡郡輝
Chun-Hui Chien
論文名稱: 脈衝高頻電漿輔助化學氣相沉積氫化非晶矽膜作為矽晶鈍化層之研究
Surface passivation of c-Si wafers using a-Si:H layers prepared by pulsed high frequency plasma enhanced chemical vapor deposition technique
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 周賢鎧
Shyan-Kay Jou
黃柏仁
Bohr-Ran Huang 
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 81
中文關鍵詞: 高頻電漿化學氣相沉積氫化非晶矽脈衝調變有效少數載子生命期退火占空比
外文關鍵詞: pulse modulation, Si heterojunction, HF-PECVD
相關次數: 點閱:688下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的在探討使用矽甲烷為原料的高頻電漿輔助化學氣相沉積輔以不同製程方式來製備氫化非晶矽薄膜於單晶矽晶片上形成異質接合。研究重點在利用高頻電漿並輔以脈衝調變的技術,找出缺陷最少的氫化非晶矽長膜的製程模式。膜對於單晶矽的表面鈍化,期望提升矽晶的有效少數載子生命期。
    首先,以連續放電之高頻電漿輔助化學氣相沉積方式探討製程參數對非晶矽膜的影響長膜發現,我們找到最佳鍍膜條件為:在反應總壓為壓力400 mTorr、基材溫度180℃、放電之平板間距5 cm、電漿功率密度為31.85 mW/cm2、氫氣稀釋比2.5。在此條件下於矽晶雙面各沉積10 nm奈米厚的氫化非晶矽,其量得矽晶片的少數載子有效載子生命期僅有達413 µs,經過退火處理後可達1255µs,此時暗示開路電壓達為706 mV。
    此外,我們將高頻電漿輔助化學氣相沉積輔以改以脈衝調變電漿模式時發現,當脈衝占空比為0.6~0.8時可成長出高品質的氫化非晶矽薄膜,此及同樣在矽晶雙面沉積10 奈米非晶矽膜之後,即可量得晶片之載子生命期達到1040 µs,(對應暗示開路電壓為698 mV),並施加退火處理後晶片少數載子生命期更可達到1370 µs,此時暗示開路電壓達711 mV。顯示本實驗的脈衝調變電漿模式確實可以長出較低缺陷的氫化非晶矽薄膜。


    Hydrogenated amorphous Si (a-Si:H) thin films were prepared on single crystal Si (c-Si) wafers to form a-Si:H/c-Si heterojuction structure using high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD) technique at a reactant dilution ratio of [H2]/[SiH4] = 2.5. Emphasis was placed upon exploring the optimized pulse-modulation mode of HF-PECVD operated at around 40 MHz to obtain a-Si:H thin films with minimum defects that can passivate c-Si well.
    First of all, a baseline condition to synthesize a-Si:H thin films was investigated under continuous wave mode of HF-PECVD. The films were of good quality synthesized at 400 mTorr of total pressure, 180℃ of substrate temperature, 5 cm of elelctrode working distance, 31.58 mW/cm2 of plasma power density, and 2.5 of [H2]/[SiH4] reactant dilution ratio. The as-deposited a-Si:H/c-Si heterojuction thus prepared showed a minority carrier lifetime of 413 µs, which was enhanced to 1255 µs after an annealing treatment at 200 ℃for 1 hr.
    Then, pulse-modulation of HF-PECVD was adopted which showed that the as-deposited a-Si:H thin films with the least SiH2 bonding amount can be formed at a high pulsing modulation frequency of 3 × 104 Hz and pulsed duty cycles in the range of 0.6 – 0.8. The a-Si:H/c-Si heterojuction prepared under this mode showed a very high minority carrier lifetime of 1040 µs even for the as deposited state. A further heat treatment promoted minority carrier lifetime only a little bit to 1370 µs, corresponding an implied Voc of 711 mV. This results indicated that very low defect grade a-Si:H films can be formed using pulse-modulated HF-plasma mode.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 矽晶太陽電池的表面鈍化 3 1.3 非晶矽薄膜的結構及光電性質 12 1.4 矽晶異質接合(a-Si:H/c-Si)太陽電池的鍍膜技術 16 1.4.1熱燈絲化學氣相沉積 (hot-wire CVD) 16 1.4.2射頻電漿輔助化學氣相沉積 (RF-PECVD) 17 1.4.3高頻電漿輔助化學氣相沉積 (HF-PECVD) 18 1.4.4脈衝電漿輔助化學氣相沉積 (pulsed-PECVD) 21 1.5 非晶矽的成長機制和磊晶現象 30 1.6 研究目的與方向 34 第二章 實驗相關部分 36 2.1 實驗藥品和氣體 36 2.2 實驗裝置和步驟 37 2.3 實驗程序 40 2.3.1 矽晶基材之清洗 40 2.3.2 玻璃基材的清洗 42 2.3.3 沉積非晶矽膜實驗及量測 43 2.4分析儀器 44 2.4.1 橢圓偏光儀(Spectroscopy Ellipsometry) 44 2.4.2 拉曼光譜儀(Raman) 45 2.4.3 傅立葉紅外線光譜儀(FTIR) 47 2.4.4 載子生命週期量測儀(Lifetime tester) 50 第三章 結果與討論 55 3.1 高頻電漿輔助化學氣相沉積鍍膜參數優化 55 3.2 脈衝電漿沉積氫化非晶矽之探究 64 第四章 結論 74 參考文獻 75

    [1] "Best Research-Cell Efficiencies," National Renewable Energy Laboratory, NREL, 2016.
    [2] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3,” Journal of Applied Physics, vol. 104, no. 11, pp. 113703, 2008.
    [3] A. Aberle, S. Glunz, A. Stephens, and M. Green, “High‐eficiency silicon solar cells: Si/SiO2, interface parameters and their impact on device performance,” Progress in Photovoltaics: Research and Applications, vol. 2, no. 4, pp. 265-273, 1994.
    [4] F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, “Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics,” Solar energy materials and solar cells, vol. 120, pp. 270-274, 2014.
    [5] H. Mackel, and R. Ludemann, “Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation,” Journal of Applied Physics, vol. 92, no. 5, pp. 2602-2609, 2002.
    [6] S. W. Glunz, J. Benick, D. Biro, M. Bivour, M. Hermle, D. Pysch, M. Rauer, C. Reichel, A. Richter, M. Rüdiger, C. Schmiga, D. Suwito, A. Wolf, and R. Preu, "n-type silicon - enabling efficiencies > 20% in industrial production ". pp. 000050-000056.
    [7] J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and S. W. Glunz, “High efficiency n-type Si solar cells on Al2O3-passivated boron emitters,” Applied Physics Letters, vol. 92, no. 25, pp. 253504, 2008.
    [8] P. Saint-Cast, J. Benick, D. Kania, L. Weiss, M. Hofmann, J. Rentsch, R. Preu, and S. W. Glunz, “High-Efficiency c-Si Solar Cells Passivated With ALD and PECVD Aluminum Oxide,” IEEE Electron Device Letters, vol. 31, no. 7, pp. 695-697, 2010.
    [9] S. W. Glunz, “High-Efficiency Crystalline Silicon Solar Cells,” Advances in OptoElectronics, vol. 2007, pp. 15, 2007.
    [10] M. Schaper, J. Schmidt, H. Plagwitz, and R. Brendel, “20.1%-efficient crystalline silicon solar cell with amorphous silicon rear-surface passivation,” Progress in Photovoltaics: Research and Applications, vol. 13, no. 5, pp. 381-386, 2005.
    [11] T. Makoto, T. Mikio, M. Takao, S. Toru, T. Shinya, N. Shoichi, H. Hiroshi, and K. Yukinori, “Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer),” Japanese Journal of Applied Physics, vol. 31, no. 11R, pp. 3518, 1992.
    [12] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer,” IEEE Journal of Photovoltaics, vol. 4, no. 1, pp. 96-99, 2014.
    [13] D. Zielke, J. H. Petermann, F. Werner, B. Veith, R. Brendel, and J. Schmidt, “Contact passivation in silicon solar cells using atomic-layer-deposited aluminum oxide layers,” physica status solidi (RRL) – Rapid Research Letters, vol. 5, no. 8, pp. 298-300, 2011.
    [14] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, and N. Matsubara, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1433-1435, 2014.
    [15] N. Balaji, S. Q. Hussain, C. Park, J. Raja, J. Yi, and R. Jeyakumar, “Surface Passivation Schemes for High-Efficiency c-Si Solar Cells - A Review,” Transactions on Electrical and Electronic Materials, vol. 16, pp. 227-233, 2015.
    [16] J. Zhao, A. Wang, and M. A. Green, “24• 5% Efficiency silicon PERT cells on MCZ substrates and 24• 7% efficiency PERL cells on FZ substrates,” Progress in Photovoltaics: Research and Applications, vol. 7, no. 6, pp. 471-474, 1999.
    [17] D. Zielke, J. Petermann, F. Werner, B. Veith, R. Brendel, and J. Schmidt, "21.7% efficient PERC solar cells with AlOx tunneling layer." pp. 5-6.
    [18] A. Richter, M. Höteis, J. Benick, S. Henneck, M. Hermle, and S. Glunz, "Towards industrially feasible high-efficiency n-type Si solar cells with boron-diffused front side emitter-combining firing stable Al 2 O 3 passivation and fine-line printing." pp. 003587-003592.
    [19] F. Kiefer, C. Ulzhofer, T. Brendemuhl, N.-P. Harder, R. Brendel, V. Mertens, S. Bordihn, C. Peters, and J. W. Muller, “High efficiency n-type emitter-wrap-through silicon solar cells,” IEEE Journal of Photovoltaics, vol. 1, no. 1, pp. 49-53, 2011.
    [20] H.-C. Chang, C.-J. Huang, P.-T. Hsieh, W.-C. Mo, S.-H. Yu, and C.-C. Li, “Improvement on industrial n-type bifacial solar cell with> 20.6% efficiency,” Energy Procedia, vol. 55, pp. 643-648, 2014.
    [21] "SolarCity aims big with Silevo acquisition," http://optics.org/news/5/6/24?utm_source=rss&utm_medium%20=rss&utm_campaign=solarcity-aims-big-with-silevo-acquisition-optics-org.
    [22] P. J. Cousins, D. D. Smith, H. C. Luan, J. Manning, T. D. Dennis, A. Waldhauer, K. E. Wilson, G. Harley, and W. P. Mulligan, "Generation 3: Improved performance at lower cost." pp. 000275-000278.
    [23] M. Stutzmann, D. K. Biegelsen, and R. A. Street, “Detailed investigation of doping in hydrogenated amorphous silicon and germanium,” Physical Review B, vol. 35, no. 11, pp. 5666-5701, 04/15/, 1987.
    [24] M. H. Cohen, H. Fritzsche, and S. R. Ovshinsky, “Simple Band Model for Amorphous Semiconducting Alloys,” Physical Review Letters, vol. 22, no. 20, pp. 1065-1068, 05/19/, 1969.
    [25] A. Lösche, “N. F. MOTT, E. A. DAVIS. Electronic Processes in Non-Crystalline Materials Clarendon-Press, Oxford 1971 437 Seiten. £ 7,50,” Kristall und Technik, vol. 7, no. 4, pp. K55-K56, 1972.
    [26] E. Davis, and N. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philosophical Magazine, vol. 22, no. 179, pp. 0903-0922, 1970.
    [27] A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat‐Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin‐film silicon solar cell technology,” Progress in photovoltaics: Research and applications, vol. 12, no. 2‐3, pp. 113-142, 2004.
    [28] J. C. Kim, and R. J. Schwartz, “Parameter estimation and modeling of hydrogenated amorphous silicon,” ECE Technical Reports, pp. 89, 1996.
    [29] H. Wiesmann, A. K. Ghosh, T. McMahon, and M. Strongin, “a‐Si : H produced by high‐temperature thermal decomposition of silane,” Journal of Applied Physics, vol. 50, no. 5, pp. 3752-3754, 1979.
    [30] M. Hideki, “Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (cat-CVD) Method,” Japanese Journal of Applied Physics, vol. 30, no. 8B, pp. L1522, 1991.
    [31] D. M. Cervantes, Silicon Heterojunction Solar Cells Obtained by Hot Wire CVD: PhD Thesis, Universitat Politecnika de Catalunya, 2008.
    [32] R. A. Street, Hydrogenated amorphous silicon: Cambridge University Press, 2005.
    [33] D. L. Staebler, and C. R. Wronski, “Reversible conductivity changes in discharge‐produced amorphous Si,” Applied Physics Letters, vol. 31, no. 4, pp. 292-294, 1977.
    [34] O. Shunri, N. Jun'ichirou, and M. Masakiyo, “Diagnostic Study of VHF Plasma and Deposition of Hydrogenated Amorphous Silicon Films,” Japanese Journal of Applied Physics, vol. 29, no. 10R, pp. 1889, 1990.
    [35] H. Takatsuka, M. Noda, Y. Yonekura, Y. Takeuchi, and Y. Yamauchi, “Development of high efficiency large area silicon thin film modules using VHF-PECVD,” Solar Energy, vol. 77, no. 6, pp. 951-960, 12//, 2004.
    [36] S. Oda, “Frequency effects in processing plasmas of the VHF band,” Plasma Sources Science and Technology, vol. 2, no. 1, pp. 26, 1993.
    [37] W. Schwarzenbach, A. A. Howling, M. Fivaz, S. Brunner, and C. Hollenstein, “Sheath impedance effects in very high frequency plasma experiments,” Journal of Vacuum Science & Technology A, vol. 14, no. 1, pp. 132-138, 1996.
    [38] A. Descoeudres, L. Barraud, R. Bartlome, G. Choong, S. De Wolf, F. Zicarelli, and C. Ballif, “The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality,” Applied Physics Letters, vol. 97, no. 18, pp. 183505, 2010.
    [39] J. Perrin, C. Bohm, R. Etemadi, and A. Lloret, “Possible routes for cluster growth and particle formation in RF silane discharges,” Plasma Sources Science and Technology, vol. 3, no. 3, pp. 252, 1994.
    [40] Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogawa, and S. Ogi, “Effects of low‐frequency modulation on rf discharge chemical vapor deposition,” Applied Physics Letters, vol. 53, no. 14, pp. 1263-1265, 1988.
    [41] K. Koga, Y. Matsuoka, K. Tanaka, M. Shiratani, and Y. Watanabe, “In situ observation of nucleation and subsequent growth of clusters in silane radio frequency discharges,” Applied Physics Letters, vol. 77, no. 2, pp. 196-198, 2000.
    [42] M. Shiratani, H. Kawasaki, T. Fukuzawa, T. Yoshioka, Y. Ueda, S. Singh, and Y. Watanabe, “Simultaneous in situ measurements of properties of particulates in rf silane plasmas using a polarization‐sensitive laser‐light‐scattering method,” Journal of Applied Physics, vol. 79, no. 1, pp. 104-109, 1996.
    [43] M. Shiratani, and Y. Watanabe, “Development of Photon-Counting Laser-Light-Scattering Method for Detection of Nano-Particles Formed in CVD Plasmas,” яみЕみ研究, vol. 26, no. 6, pp. 449-452, 1998.
    [44] K. Koga, N. Kaguchi, M. Shiratani, and Y. Watanabe, “Correlation between volume fraction of clusters incorporated into a-Si:H films and hydrogen content associated with Si–H2 bonds in the films,” Journal of Vacuum Science & Technology A, vol. 22, no. 4, pp. 1536-1539, 2004.
    [45] T. Kakeya, K. Koga, M. Shiratani, Y. Watanabe, and M. Kondo, “Production of crystalline Si nano-clusters using pulsed H2 + SiH4 VHF discharges,” Thin Solid Films, vol. 506–507, pp. 288-291, 5/26/, 2006.
    [46] J. Robertson, “Growth mechanism of hydrogenated amorphous silicon,” Journal of Non-Crystalline Solids, vol. 266–269, Part 1, pp. 79-83, 5/1/, 2000.
    [47] C. Shin, J. Park, J. Jung, S. Bong, S. Kim, Y.-J. Lee, and J. Yi, “Control of micro void fraction and optical band gap in intrinsic amorphous silicon thin films (VHF-PECVD) for thin film solar cell application,” Materials Research Bulletin, vol. 60, pp. 895-899, 12//, 2014.
    [48] H. Yang, C. Wu, J. Huang, R. Ding, Y. Zhao, X. Geng, and S. Xiong, “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition,” Thin Solid Films, vol. 472, no. 1–2, pp. 125-129, 1/24/, 2005.
    [49] H. Fujiwara, and M. Kondo, “Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells,” Applied Physics Letters, vol. 90, no. 1, pp. 013503, 2007.
    [50] M. Z. Burrows, U. K. Das, R. L. Opila, S. De Wolf, and R. W. Birkmire, “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation,” Journal of Vacuum Science & Technology A, vol. 26, no. 4, pp. 683-687, 2008.
    [51] S. H. Feng, “Preparation of silicon heterojunction solar cells by VHF-PECVD system,” Chemical Engineering, National Taiwan University of Sicence and Technology, 2009.
    [52] F. B. Steven, and J. P. Daniel, Microcontrollers Fundamentals for Engineers and Scientists: Morgan & Claypool, 2006.
    [53] G. X. Cheng, H. Xia, K. J. Chen, W. Zhang, and X. K. Zhang, “Raman measurement of the grain size for silicon crystallites,” physica status solidi (a), vol. 118, no. 1, pp. K51-K54, 1990.
    [54] E. Bhattacharya, and A. Mahan, “Microstructure and the light‐induced metastability in hydrogenated amorphous silicon,” Applied physics letters, vol. 52, no. 19, pp. 1587-1589, 1988.
    [55] A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate,” Solar Energy Materials and Solar Cells, vol. 78, no. 1–4, pp. 3-26, 7//, 2003.
    [56] R. A. Sinton, and A. Cuevas, “Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data,” Applied Physics Letters, vol. 69, no. 17, pp. 2510-2512, 1996.
    [57] D. Macdonald, R. A. Sinton, and A. Cuevas, “On the use of a bias-light correction for trapping effects in photoconductance-based lifetime measurements of silicon,” Journal of Applied Physics, vol. 89, no. 5, pp. 2772-2778, 2001.
    [58] I. Masao, K. Michio, and M. Akihisa, “Device-Grade Amorphous Silicon Prepared by High-Pressure Plasma,” Japanese Journal of Applied Physics, vol. 41, no. 4R, pp. 1947, 2002.
    [59] A. Matsuda, and K. Tanaka, “Investigation of the growth kinetics of glow‐discharge hydrogenated amorphous silicon using a radical separation technique,” Journal of Applied Physics, vol. 60, no. 7, pp. 2351-2356, 1986.
    [60] T. H. Wang, E. Iwaniczko, M. R. Page, D. H. Levi, Y. Yan, H. M. Branz, and Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells,” Thin Solid Films, vol. 501, no. 1–2, pp. 284-287, 4/20/, 2006.

    QR CODE