簡易檢索 / 詳目顯示

研究生: 張翔
Hsiang - Chang
論文名稱: 以草酸鋅為前驅物成長氧化鋅一維材料
Synthesis of One-Dimensional Zinc Oxide from a Zinc Oxalate Precursor
指導教授: 鄭如茵
Ju-Yin Cheng
郭東昊
Dong-Hau Kuo
口試委員: 薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 127
中文關鍵詞: 草酸鋅水溶液法退火一維氧化鋅材料
外文關鍵詞: zinc oxalate, aqueous solution method, annealing process, one-dimension ZnO materials
相關次數: 點閱:205下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是使用草酸鋅為前驅物來成長氧化鋅一維材料,並討論在不同溫度、時間、模板比例、鹼性溶劑的量以及退火溫度等條件下對氧化鋅一維材料成長之影響。氧化鋅一維材料的水溶液法製備方式主要分為兩個步驟,首先利用氨水與草酸鋅分子反應形成錯離子後藉由HMTA的輔助來重新排列成一維的型態;第二步驟則是將前一步驟的產物經過不同溫度的退火處理來得到一維氧化鋅材料。
    在實驗過程中,我們透過改變各種參數來討論氧化鋅一維材料的成長情況,並發現在HMTA對ZnC2O4的mole比為1:1、反應溫度80°C、反應時間30分鐘、NH4OH體積2ml、450°C退火30分鐘等條件下可以成長出長度45μm、直徑100~250nm的多晶氧化鋅一維材料,並輔以SEM顯微分析說明各種實驗參數不同的成長情況、TEM影像了解更細微的顯微結構、XRD分析鑑定產物組成、TGA得到退火熱裂解溫度、EDS及IR光譜來檢驗一維材料的成分以及透過UV-visible吸收光譜計算出產物的能帶間隙。


    One-dimensional zinc oxide materials were prepared from commercially available zinc oxalate precursors. The effects of reaction temperature, reaction time, ratio of zinc oxalate and HMTA (hexamethylenetetramine), the concentration of the basic agent, and the annealing temperature on the preparation of one-dimensional (1-D) ZnO by an aqueous solution method were investigated. The formation of 1-D ZnO involved two steps. The first step was the dissolution of zinc oxalate by the solvent of ammonia to form the stable complexes. HMTA had already been incorporated into this solution to assist the zinc precursors in arranging into the 1-D configuration. At the second one, the products in the first step were annealed at different temperatures to obtain 1-D ZnO.
    The experimental results demonstrate that the 1-D ZnO with the lengths of 45 μm and diameters of 100~250 nm have been produced with the conditions of the HMTA: ZnC2O4 ratio of 1:1, reaction temperature of 80°C, reaction time of 30 min, the ammonia aqueous solution of 2 ml, and annealing at 450°C for 30 min. SEM and TEM were used to observe the microstructure of 1-D materials grown at different conditions. The structure of the products was identified by X-ray diffraction. To ensure the thermal decomposition temperature, the TGA analysis was executed. EDS equipped on SEM and the IR spectroscopy were used to analyze the product composition. Energy gap of 450°C-annealed ZnO was calculated from the UV-vis data.

    致謝 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XXII 第一章 導論 1 第二章 文獻回顧 6 2-1氧化鋅的晶體結構 6 2-2氧化鋅的發光性質 7 2-3氧化鋅一維奈米線製備方法 8 2-4氧化鋅一維奈米線成長機制 18 2-4-1溶劑的選擇對於成長氧化鋅一維奈米線的影響 24 2-4-2 pH值的控制對於成長氧化鋅一維奈米線的影響 26 2-4-3模板的輔助對於成長氧化鋅一維奈米線的影響 28 2-5摻雜對氧化鋅晶體放光的影響 37 2-6氧化鋅一維奈米線的應用 44 第三章 研究動機與實驗方法 53 3-1研究動機 53 3-2實驗方法 54 3-2-1實驗藥品與儀器 54 3-2-2實驗步驟 56 3-3儀器分析介紹 59 3-3-1掃描式/穿透式電子顯微鏡(SEM /TEM) 59 3-3-2 X光粉末繞射儀系統(X-Ray Diffractometer) 60 3-3-3 EDS/WDS成分分析 60 3-3-4紫外光/可見光光譜儀(UV-vis spectroscopy) 61 3-3-5傅立葉紅外線光譜儀(Fourier Transform Infrared Spectrometer) 61 3-3-6熱重損失分析儀(Thermogravimetric analysis, TGA) 62 第四章 結果與討論 63 4-1氨水濃度對於成長一維氧化鋅材料的影響 64 4-2不同HMTA與ZnC2O4的莫耳比對成長一維氧化鋅材料的影響 75 4-3不同濃度的ZnC2O4對成長一維氧化鋅材料的影響 81 4-4不同成長溫度對一維氧化鋅材料的影響 85 4-5化學物種添加方式與退火處理對成長一維氧化鋅材料的影響 98 4-6 TGA結果與分析 104 4-7 XRD結構分析 106 4-8 FT-IR分析 112 4-9 TEM顯微結構分析 113 4-10 UV-VIS分析 117 第五章 結論 120 參考文獻 121

    1. 林鴻明、林中魁,奈米科技應用研究與展望,工業材料(2001)
    2. 盧希鵬、馬振基,奈米材料技術地圖,國科會科學技術資料中心(2003)
    3. 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民,奈米科技導論,全華圖書股份有限公司(2008)
    4. 尹邦躍、張勁燕,奈米時代,五南圖書出版股份有限公司(2002)
    5. 莊萬發,超微粒子理論應用,復漢出版社(1995)
    6. A. J. C. Wilson, International Tables for crystallography, Kluwer Academic Publishers(1995)
    7. 余樹楨,晶體之結構與性質,渤海堂文化公司(1987)
    8. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Applied Physics Letters 68, 403(1996)
    9. Jae-Hong Lim, Chang-Ku Kang, Kyoung-Kook Kim, Il-Kyu Park, Dae-Kue Hwang, and Seong-Ju Park, Advanced Materials 18, 2720(2006)
    10. F. Liu, P. J. Cao, H. R. Zhang, C. M. Shen, Z. Wang, J. Q. Li, and H. J. Gao, Journal of Crystal Growth 274, 126(2005)
    11. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Applied Physics Letters 78,407(2001)
    12. T. Monteiro,, A.J. Neves, M.C. Carmo, M.J. Soares, M. Peres, E. Alves, E. Rita, and U. Wahl, Superlattices and Microstructures 39, 202(2006)
    13. A. Zubiaga, and J. A. García, Journal of Applied Physics 99, 053516(2006)
    14. F. Tuomisto, V. Ranki, and K. Saarinen, Physical Review Letters 91, 205502(2003)
    15. Bixia Lin, Zhuxi Fu, and Yunbo Jia, Applied Physics Letters 79, 943(2001)
    16. Jing Hui Zeng, Yong Lin Yu, Ye Feng Wang, and Tian Jun Lou, Acta Materialia 57, 1813(2009)
    17. Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, and D. P. Norton, Applied Physics Letters 81, 3046(2002)
    18. Kim Kyoung-Kook, Song Jae-Hoon, Jung Hyung-Jin, Choi Won-Kook, Park Seong-Ju, Song Jong-Han, and Lee Jeong-Yong, Journal of Vacuum Science and Technology A 18, 2864 (2000)
    19. S. H. Kim, Ahmad Umar, Y. K. Park, J. H. Kim, E.W. Lee, and Y. B. Hah, Journal of Alloys and Compounds 479, 290(2009)
    20. Liwei Lin, Hideo Watanabe, Masayoshi Fuji,w Takeshi Endo, Seiji Yamashita, and Minoru Takahashi, Journal of the American Ceramic Society 92, 165(2009)
    21. Juan Xie, Ping Li, Yanting Li, Yanji Wang, and YuWei, Materials Chemistry and Physics 114, 943(2009)
    22. Po-Ching Kao, Sheng-Yuan Chu, Bing-Jing Li, Jer-Wei Chang, Hsin-Hsuan Huang, Ying-Chien Fang, and Ren-Chuan Chang, Journal of Alloys and Compounds 467, 342(2009)
    23. Zikun Li, Xintang Huang, Jinping Liu, and Hanhua Ai, Materials Letters 62, 2507(2008)
    24. E. Bacaksiz, M. Parlak, M. Tomakin, A. O¨ zc¸elik, M. Karakız, and M. Altunbas, Journal of Alloys and Compounds 466, 447(2008)
    25. Lori E. Greene, Matt Law, Joshua Goldberger, Franklin Kim, Justin C. Johnson, Yanfeng Zhang, Richard J. Saykally, and Peidong Yang, Angewandte Chemie-International Edition 42, 3031 (2003)
    26. Sheng Xu, Yaguang Wei, Melanie Kirkham, Jin Liu, Wenjie Mai, Dragomir Davidovic, Robert L. Snyder, and Zhong Lin Wang, Journal of the American Chemical Society 130, 14958 (2008)
    27. 汪信、劉孝恒,奈米材料化學,五南圖書出版股份有限公司(2006)
    28. Ming Wang, Chang-Hui Ye, Ye Zhang, Hui-Xin Wang, Xiao-Yan Zeng,and Li-De Zhang, Journal of Materials Science-Materials in Electronics 19, 211(2008)
    29. Hongxing Li, Mingxia Xia, Guozhang Dai, Hongchun Yu, Qinglin Zhang, Anlian Pan, Taihong Wang, Yanguo Wang, and Bingsuo Zou, Journal of Physical Chemistry C 112, 17546(2008)
    30. Ruth A. McBride, John M. Kelly, and Declan E. McCormack, Journal of Materials Chemistry 13, 1196(2003)
    31. Linping Xu, Yan-Ling Hu, Candice Pelligra, Chun-Hu Chen, Lei Jin, Hui Huang, Shanthakumar Sithambaram, Mark Aindow, Raymond Joesten, and Steven L. Suib, Chemistry Materials 21, 2875(2009)
    32. Tetsuo Kawano, and Hiroaki Imai, Crystal growth & design 6, 1054(2006)
    33. G.S. Wu, T. Xie, X.Y. Yuan, Y. Li, L. Yang, Y.H. Xiao, and L.D. Zhang, Solid State Communications 134, 485(2005)
    34. X. Ren, C.H. Jiang, D.D. Li, and L. He, Materials Letters 62, 3114(2008)
    35. Brian T. Mayers, Byron D. Gates, Yugang Sun, Yadong Yin, Yu Lu, and Younan Xia, Proceedings of SPIE - The International Society for Optical Engineering 4807, 123(2002)
    36. Abhilash Sugunan, Hemant C.Warad, Mats Boman, and Joydeep Dutta, Journal of Sol-Gel Science and Technology 39, 49(2006)
    37. Matt Law, Lorie. Greene, Justin C. Johnson, Richard Saykally, and Peidong Yang, Nature Materials 4,455(2005)
    38. Yanhong Tong, Yichun Liu, Lin Dong, Dongxu Zhao, Jiying Zhang, Youming Lu, Dezhen Shen, and Xiwu Fan, Journal of Physical Chemistry B 110, 20263(2006)
    39. Peng Jiang, Shun-Yu Li, Si-Shen Xie, Yan Gao, and Li Song, Chemistry-A European Journal 10, 4817(2004)
    40. Yuliang Wang, Thurston Herricks, and Younan Xia, Nano Letters 3, 1163(2003)
    41. Yang Guo, Xuebo Cao, Xianmei Lan, Cui Zhao, Xiudong Xue, and Yingying Song, Journal of Physical Chemistry C 112, 8832(2008)
    42. C J Cong, L Liao, J C Li, L X Fan, and K L Zhang, Nanotechnology 16, 981(2005)
    43. BaiqiWang, Javed Iqbal, Xudong Shan, Guowei Huang, Honggang Fud, Ronghai Yu, and Dapeng Yu, Materials Chemistry and Physics 113, 103(2009)
    44. Liang Shi, Yeming Xu, Suikong Hark, Yang Liu, Sheng Wang, Lian-mao Peng, Kawai Wong, and Quan Li, Nano Letters 7, 3559(2007)
    45. Hsin-Ming Cheng, Wei-Hao Chiu, Chia-Hua Lee, Song-Yeu Tsai, and Wen-Feng Hsieh, Journal of Physical Chemistry C 112, 16359(2008)
    46. Yi Zeng, Tong Zhang, Lijie Wang, Rui Wang, Wuyou Fu, and Haibin Yang, Journal of Physical Chemistry C 113, 3442(2009)
    47. Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, Applied Physics Letters 83, 144(2003)
    48. Sunandan Baruah, Chanchana Thanachayanont, and Joydeep Dutta, Science and Technology of Advanced Materials 9, 025009(2008)
    49. Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, and Takafumi Yao, Journal of Applied Physics 84, 3912(1998)
    50. Ming Wang, Chang-Hui Ye, Ye Zhang, Guo-Min Hua, Hui-Xin Wang, Ming-Guang Kong, and Li-De Zhang, Journal of Crystal Growth 291, 334(2006)
    51. Q. Ahsanulhaq, S.H.Kim, and Y.B.Hahn, Journal of Physics and Chemistry of Solids 70, 627(2009)
    52. Q Ahsanulhaq, A Umar, and Y B Hahn, Nanotechnology 18, 115603(2007)
    53. Jun Zhang, Lingdong Sun, Jialu Yin, Huilan Su, Chunsheng Liao, and Chunhua Yan, Chemistry of Materials 14, 4172(2002)
    54. K. Sangwal, and E. Mielniczek-Brzóska, Crystal Research and Technology 42,531(2007)
    55. Rajeev Ranjan, Sonalika Vaidya, Pallavi Thaplyal, Mohd. Qamar, Jahangeer Ahmed, and Ashok K. Ganguli, Langmuir 25, 6469(2009)
    56. Sonalika Vaidya, Tokeer Ahmad, Suman Agarwal, and Ashok K. Ganguli, Journal of the American Ceramic Society 90, 863(2007)
    57. Xiao Lin Li, Jun Feng Liu, and Ya Dong Li, Materials Chemistry and Physics 80, 222(2003)
    58. Rajeev Ranjan, Sonalika Vaidya, Pallavi Thaplyal, Mohd. Qamar, Jahangeer Ahmed, and Ashok K. Ganguli, Langmuir 25, 6469(2009)
    59. Tokeer Ahmad, Sonalika Vaidya, Niladri Sarkar,Subhasis Ghosh, and Ashok K Ganguli, Nanotechnology 17, 1236 (2006)

    QR CODE