簡易檢索 / 詳目顯示

研究生: Rizki Fitri Rahima Uulaa
Rizki Fitri Rahima Uulaa
論文名稱: 電腦模擬和影像建模對學生物理概念、樂趣、動機和實驗活動感知的影響
The Effects of Computer Simulation and Video Modeling on Students’ Physics Concept, Enjoyment, Motivation, and Perceptions of Laboratory Activities
指導教授: 陳素芬
Su-Fen Chen
王嘉瑜
Chia-Yu Wang
口試委員: 王嘉瑜
Chia-Yu Wang
李文瑜
Silvia Wen-Yu Lee
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 74
中文關鍵詞: 電腦模擬探究式學習影片示範教學中學生拋射運動
外文關鍵詞: computer simulation, inquiry-based learning, projectile motion, secondary school, video modeling
相關次數: 點閱:545下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究將電腦模擬和影片示範教學融入物理學習中,並探討它們對理解抛
射運動概念、享受程度、動機和對實驗活動的看法所產生的影響。參與者是印度
尼西亞東爪哇省一所私立高中的十年級學生。實驗組1有二十六名學生,實驗組2
則有二十八名學生。研究進行了八次時長 90 分鐘的面對面會議。兩組學生各別
分組進行探究實驗;實驗組1使用電腦模擬,實驗組2使用影片示範教學。實驗活
動結束後,學生分享了他們的發現並從同學和老師那裡獲得反饋。學生的概念理
解是通過前測、後測和延後測試來測量的,他們對實驗室活動的享受程度、動機
和看法則是通過後測與延後測的問卷和訪談來測量。研究結果表明,與影片示範
教學相比,電腦模擬顯著提高了學生的物理概念,但兩組學生記憶中保留的物理
概念沒有顯著差異。此外,後測和延後測的問卷結果顯示出學生的動機和享受程
度存在顯著差異。然而,學生對實驗活動的看法方面則沒有顯著差異。本研究可
以作為物理老師在設計以技術增強的方式進行抛射運動主題的物理實驗學習時的
參考。


This study incorporated a computer simulation and video modeling into
physics learning and explored their effects on understanding projectile motion
concepts, enjoyment, motivation, and perceptions of laboratory activities. The
participants were 10th-grade students in a private high school in East Java,
Indonesia. Experimental group 1 consisted of twenty-six students, and
experimental group 2 involved twenty-eight students. The study was
conducted through eight face-to-face, 90 minutes meetings. Students in both
groups conducted an inquiry laboratory in teams; experimental group 1 used
a computer simulation, and experimental group 2 used video modeling. After
the laboratory activity, students shared their findings and received feedback
from their classmates and teacher. Students’ conceptual understanding was
measured by pre, post, and delayed tests. Their enjoyment, motivation, and
perceptions of laboratory activities were measured by post-laboratory and
delayed questionnaires and interviews. The findings showed that computer
simulation significantly improved students’ physics concepts compared to
video modeling, but there was no significant difference in students’ retained
physics concepts between the two groups. In addition, the post- and delayed
questionnaires also revealed significant differences in students’ motivation and
enjoyment. However, there was no significant difference in students’
perceptions of laboratory activities. This study can be a reference for physics
teachers to design a technology-enhance physics laboratory learning in the
projectile motion topic.

Abstract ................................................................................................................................ 2 Acknowledgement ................................................................................................................ 3 CHAPTER 1 INTRODUCTION........................................................................................... 7 1.1. Research Background................................................................................... 7 1.2. Research Purpose ....................................................................................... 10 1.3. Research Questions.................................................................................... 10 CHAPTER 2 LITERATURE REVIEW .............................................................................. 12 2.1. Computer Simulation in Physics Learning.................................................. 12 2.2. Video Modeling in Physics Learning.......................................................... 15 2.3. Inquiry-Based Learning.............................................................................. 19 2.4. Dependent Variables of The Study ............................................................. 21 CHAPTER 3 METHODOLOGY ........................................................................................ 25 3.1. Participants ................................................................................................ 25 3.2. Experimental Procedures............................................................................ 25 3.3. Measuring Instruments............................................................................... 28 3.3.1 Physics Concept of Projectile Motion ............................................... 29 3.3.2 Enjoyment of Laboratory Activity .................................................... 29 3.3.3 Motivation........................................................................................ 29 3.3.3 Perceptions toward Laboratory Activities ........................................ 30 3.3.4 Interview .......................................................................................... 30 3.4. Data Analysis............................................................................................. 31 CHAPTER 4 RESULTS ..................................................................................................... 32 4.1. Students’ Physics Concept.......................................................................... 37 4.2. Students' Learning Enjoyment, Motivation, and Perceptions ...................... 33 CHAPTER 5 DISCUSSION AND CONCLUSION ............................................................ 43 5.1. Discussion.................................................................................................. 43 VIII 5.2. Conclusion ................................................................................................. 48 5.3. Limitations................................................................................................. 50 REFERENCES ................................................................................................................... 48 APPENDIX ........................................................................................................................ 60

Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani,
S., & Van Velsen, M. (2014). Using erroneous examples to improve mathematics
learning with a web-based tutoring system. Computers in Human Behavior, 36,
401-411. http://dx.doi.org/10.1016/j.chb.2014.03.053.
Aghamolaei, T., & Fazel, I. (2010). Medical students' perceptions of the educational
environment at an Iranian Medical Sciences University. BMC Medical Education,
10 (1), 1-7. http://https://doi.org/10.1186/1472-6920-10-87.
Aguilar-Marín, P., Chavez-Bacilio, M., & Jáuregui-Rosas, S. (2018). Using analog
instruments in Tracker video-based experiments to understand the phenomena of
electricity and magnetism in physics education. European Journal of Physics,
39(3), 035204. https://doi.org/10.1088/1361-6404/aaa8f8.
Ainley, M., & Hidi, S. (2014). Interest and enjoyment. International Handbook of
Emotions in Education. https://doi.org/10.4324/9780203148211.
Al Mamun, M. A., Lawrie, G., & Wright, T. (2022). Exploration of learner-content
interactions and learning approaches: The role of guided inquiry in the selfdirected online environments. Computers & Education, 178, 104398.
https://doi.org/10.1016/j.compedu.2021.104398.
Amutha, D. (2020). The Role and Impact of ICT in Improving the Quality of Education.
SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3585228.
Astutik, S., & Prahani, B. K. (2018). The Practicality and Effectiveness of Collaborative
Creativity Learning (CCL) Model by Using PhET Simulation to Increase
Students' Scientific Creativity. International Journal of Instruction, 11(4), 409-
424. https://10.12973/iji.2018.11426a.
Bakhshialiabad, H., Bakhshi, M., & Hassanshahi, G. (2015). Students’ perceptions of
the academic learning environment in seven medical sciences courses based on
DREEM. Advances in Medical Education and Practice, 6, 195.
https://doi.org/10.2147/AMEP.S60570.
Banda, H. J., & Nzabahimana, J. (2022). Effect of integrating physics education
technology simulations on students conceptual understanding in physics: A review
of literature. Physical Review Physics Education Research, 17(2), 23108.
https://doi.org/10.1103/PhysRevPhysEducRes.17.023108.
45
Batuyong, C. T., & Antonio, V. V. (2018). Exploring the effect of PhET interactive
simulation- based activities on students’ performance and learning experiences in
electromagnetism. Asia Pacific Journal of Multidisciplinary Research, 6(2), 121–
131.
Brown, D. (2008). Video modeling: combining dynamic model simulations with
traditional video analysis. In American Association of Physics Teachers (AAPT)
Summer Meeting.
Bereiter, C., & Scardamalia, M. (2006). Education for the knowledge age: Designcentered models of teaching and instruction. Handbook of educational
psychology, 2, 695-713.
Blunsdon, B., Reed, K., McNeil, N., & McEachern, S. (2003). Experiential learning in
social science theory: An investigation of the relationship between student
enjoyment and learning. Higher Education Research & Development, 22(1), 43-
56. http://dx.doi.org/10.1080/0729436032000056544.
Bogusevschi, D., Muntean, C., & Muntean, G. M. (2020). Teaching and learning
physics using 3D virtual learning environment: A case study of combined virtual
reality and virtual laboratory in secondary school. Journal of Computers in
Mathematics and Science Teaching, 39(1), 5-18.
Bonsu, N. O., Bervell, B., Kpodo, E., Arkorful, V., & Edumadze, J. K. (2020).
Computer-assisted instruction in the teaching and learning of history: A
Systematic Review in Africa. Computer, 14(9), 584-605.
https://doi.org/10.21601/jdet/11334.
Buck, L. B., Bretz, S. L., & Towns, M. H. (2008). Characterizing the level of inquiry in
the undergraduate laboratory. Journal of College Science Teaching, 38(1), 52-58.
Cano de las Heras, S., Kensington-Miller, B., Young, B., Gonzalez, V., Krühne, U.,
Mansouri, S. S., & Baroutian, S. (2021). Benefits and challenges of a virtual
laboratory in chemical and biochemical engineering: Students’ experiences in
fermentation. Journal of Chemical Education, 98(3), 866-875.
https://doi.org/10.1021/acs.jchemed.0c01227.
Canoz, G. M., Ucar, S., & Demircioglu, T. (2022). Investigate the effect of
argumentation-promoted interactive simulation applications on students’
argumentation levels, academic achievements, and entrepreneurship skills in
science classes. Thinking Skills and Creativity, 45, 101106.
https://doi.org/10.1016/j.tsc.2022.101106.
46
Chai, C. S., Deng, F., Tsai, P.-S., Koh, J. H. L., & Tsai, C.-C. (2015). Assessing
multidimensional students’ perceptions of twenty-first-century learning practices.
Asia Pacific Education Review, 16(3), 389–398. https://doi.org/10.1007/s12564-
015-9379-4.
Chen, S., Chang, W. H., Lai, C. H., & Tsai, C. Y. (2014). A comparison of students’
approaches to inquiry, conceptual learning, and attitudes in simulation‐based and
microcomputer‐based laboratories. Science Education, 98(5), 905-935.
https://doi.org/10.1002/sce.21126.
Cheng, K. H., & Tsai, C. C. (2019). A case study of immersive virtual field trips in an
elementary classroom: Students’ learning experience and teacher-student
interaction behaviors. Computers & Education, 140, 103600.
https://doi.org/10.1016/j.compedu.2019.103600.
Chumba, A. K., Omwenga, E. N., & Atemi, G. (2020). Effects of using computer
simulations on learners’ academic achievement in physics in secondary schools in
Ainamoi Sub-County, Kericho County. Journal of Research Innovative and
Implications in Education.
Cobuild, C., & University of Birmingham (GB). (2003). Collins COBUILD advanced
learner's English dictionary. Harper Collins Publishers.
Dega, B. G., Kriek, J., & Mogese, T. F. (2013). Students' conceptual change in
electricity and magnetism using simulations: A comparison of cognitive
perturbation and cognitive conflict. Journal of Research in Science
Teaching, 50(6), 677-698. https://doi.org/10.1002/tea.21096.
De Jong, T., & Lazonder, A. W. (2014). The guided discovery learning principle in
multimedia learning. The Cambridge handbook of multimedia learning, 371.
https://doi.org/10.1017/CBO9781139547369.019.
DiDonato, N. C. (2013). Effective self-and co-regulation in collaborative learning
groups: An analysis of how students regulate problem solving of authentic
interdisciplinary tasks. Instructional Science, 41(1), 25-47.
https://doi.org/10.1007/s11251-012-9206-9.
Duchastel, P. C. (1981). Retention of prose following testing with different types of
tests. Contemporary Educational Psychology, 6(3), 217–226.
https://doi.org/10.1016/0361-476x(81)90002-3.
Eriyanto, M. G., Roesminingsih, M. V., & Soeherman, I. K. (2021). The effect of
learning motivation on learning independence and learning outcomes of students
47
in the package c equivalence program. International Journal of Recent
Educational Research, 2(4), 455-467. https://doi.org/10.46245/ijorer.v2i4.122.
Fahrunnisa, S. A., Rismawati, Y., Sinaga, P., & Rusdiana, D. (2021, March).
Experiments of the law of conservation of mechanical energy using video Tracker
in high school learning. In Journal of Physics: Conference Series (Vol. 1806, No.
1, p. 012035). IOP Publishing. https://doi.org/10.1088/1742-6596/1806/1/012035.
Fan, X. (2015). Effectiveness of an inquiry-based learning using interactive simulations
for enhancing students’ conceptual understanding in physics. A thesis submitted
for the degree of Doctor of Philosophy at The University of Queensland.
https://doi.org/10.14264/uql.2015.1005.
Focht, B. C. (2009). Brief walks in outdoor and laboratory environments: effects on
affective responses, enjoyment, and intentions to walk for exercise. Research
Quarterly for Exercise and Sport, 80(3), 611-620.
http://dx.doi.org/10.1080/02701367.2009.10599600.
Fugate, J. M., Macrine, S. L., & Cipriano, C. (2019). The role of embodied cognition for
transforming learning. International Journal of School & Educational
Psychology, 7(4), 274-288. https://doi.org/10.1080/21683603.2018.1443856.
Galla, B. M., Amemiya, J., & Wang, M. T. (2018). Using expectancy-value theory to
understand academic self-control. Learning and Instruction, 58, 22-33.
https://doi.org/10.1016/j.learninstruc.2018.04.004.
Gani, A., Syukri, M., Khairunnisak, K., Nazar, M., & Sari, R. P. (2020). Improving
concept understanding and motivation of learners through Phet simulation word.
In Journal of Physics: Conference Series (Vol. 1567, No. 4, p. 042013). IOP
Publishing. https://doi.org/10.1088/1742-6596/1567/4/042013.
Garcia, T., & Pintrich, P.R. (1992). Critical thinking and its relationship to motivation,
learning strategies, and classroom experience. Paper presented at the Annual
Meeting of the American Psychological Association, Washington, DC, August.
Gomez, E. A., Wu, D., & Passerini, K. (2010). Computer-supported team-based
learning: The impact of motivation, enjoyment and team contributions on learning
outcomes. Computers & Education, 55(1), 378-390.
https://doi.org/0.1016/j.compedu.2010.02.003.
Hampden-Thompson, G., & Bennett, J. (2013). Science teaching and learning activities
and students' engagement in science. International Journal of Science
Education, 35(8), 1325-1343. https://doi.org/10.1080/09500693.2011.608093.
48
Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The
Physics Teacher, 30(3), 141–158. https://doi.org/10.1119/1.2343497.
Hidayat, D. A. S. R. U. N., Anisti, P., & Wibawa, D. (2020). Crisis management and
communication experience in education during the covid–19 pandemic in
indonesia. Jurnal Komunikasi: Malaysian Journal of Communication, 36(3), 67-
82. https://doi.org/10.17576/JKMJC-2020-3603-05.
Hockicko, P., Krišt′ák, L., & Němec, M. (2014). Development of students’ conceptual
thinking by means of video analysis and interactive simulations at technical
universities. European Journal of Engineering Education, 40(2), 145–
166. https://doi.org/10.1080/03043797.2014.9413.
Holmes, N. G., & Wieman, C. E. (2018). Introductory physics labs: we can do. Physics
Today, 71, 1-38. https://doi.org/10.1063/PT.3.3816.
Husnaini, S. J., & Chen, S. (2019). Effects of guided inquiry virtual and physical
laboratories on conceptual understanding, inquiry performance, scientific inquiry
self-efficacy, and enjoyment. Physical Review Physics Education Research, 15(1),
010119. Objectives. https://doi.org/10.1103/PhysRevPhysEducRes.15.010119.
Jeffries, D., Curtis, D. D., & Conner, L. N. (2020). Student factors influencing STEM
subject choice in year 12: A structural equation model using PISA/LSAY data.
International Journal of Science and Mathematics Education, 18(3), 441–461.
https://doi.org/10.1007/s10763-019-09972-5.
Jerrim, J., Oliver, M., & Sims, S. (2020). The relationship between inquiry-based
teaching and students’ achievement. New evidence from a longitudinal PISA
study in England. Learning and Instruction, 101310.
https://doi.org/10.1016/j.learninstruc.2020.101310.
Koh, C., Tan, H. S., Tan, K. C., Fang, L., Fong, F. M., Kan, D., ... & Wee, M. L. (2010).
Investigating the effect of 3D simulation based learning on the motivation and
performance of engineering students. Journal of Engineering Education, 99(3),
237-251. https://doi.org/10.1002/j.2168-9830.2010.tb01059.x.
Soh, T. M. T., Arsad, N. M., & Osman, K. (2010). The relationship of 21st century
skills on students’ attitude and perception towards physics. Procedia-Social and
Behavioral Sciences, 7, 546-554. https://doi.org/10.1016/j.sbspro.2010.10.073.
Kuyper, H., van der Werf, M.P.C., & Lubbers, M.J. (2000). Motivation, meta-cognition
and self-regulation as predictors of long term educational attainment. Educational
49
Research and Evaluation, 6(3), 181–201. https://doi.org/10.1076/1380-
3611(200009)6:3;1-A;FT181.
Krobthong, T. (2015). Teaching university physics by using interactive science
simulations methods. Procedia-Social and Behavioral Sciences, 197, 1811-1817.
https://doi.org/10.1016/j.sbspro.2015.07.240.
Lakoff, G., Johnson, M., & Sowa, J. F. (1999). Review of Philosophy in the Flesh: The
embodied mind and its challenge to Western thought. Computational Linguistics,
25(4), 631-634.
Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning:
Effects of guidance. Review of Educational Research, 86(3), 681-718.
https://doi.org/10.3102/0034654315627366.
Lee, O. (1989). Motivation to learning science in middle school classrooms. University
Microfilms International. Unpublished Doctoral Dissertation, Michigan State
University, East Lansing. https://doi.org/10.13189/ujer.2017.050418.
Lee, O., & Brophy, J. (1996). Motivational patterns observed in sixth‐grade science
classrooms. Journal of Research in Science Teaching: The Official Journal of the
National Association for Research in Science Teaching, 33(3), 303-318.
https://doi.org/10.1002/(SICI)1098-2736(199603)33:3<303::AIDTEA4>3.0.CO;2-X.
Liang, Y., Lau, P. W. C., Huang, W. Y. J., Maddison, R., & Baranowski, T. (2014).
Validity and reliability of questionnaires measuring physical activity self-efficacy,
enjoyment, social support among Hong Kong Chinese children. Preventive
Medicine Reports, 1, 48–52. https://doi.org/10.1016/j.pmedr.2014.09.005.
Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration.
Science Education, 87(4), 517-538.
Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and
engagement through embodied interaction within a mixed reality simulation.
Computers & Education, 95, 174-187.
http://dx.doi.org/10.1016/j.compedu.2016.01.001.
Lindner, J. R. (1998). Understanding employee motivation. Journal of Extension, 36(3),
1-8.
Lynch, T., & Ghergulescu, I. (2017). Review of virtual labs as the emerging
technologies for teaching STEM subjects. INTED 2017 Proceedings, 6082-6091.
https://10.21125/inted.2017.1422.
50
Manunure, K., Delserieys, A., & Castéra, J. (2020). The effects of combining
simulations and laboratory experiments on Zimbabwean students’ conceptual
understanding of electric circuits. Research in Science & Technological
Education, 38(3), 289-307. https://doi.org/10.1080/02635143.2019.1629407.
Martin, A. J. (2016). Using Load Reduction Instruction (LRI) to boost motivation and
engagement. Leicester: British Psychological Society.
Matute-Vallejo, J., & Melero-Polo, I. (2019). Understanding online business simulation
games: The role of flow experience, perceived enjoyment and personal
innovativeness. Australasian Journal of Educational Technology, 35(3).
https://doi.org/10.14742/ajet.3862.
Mayer, R. E., & Anderson, R. B. (1991). Animations need narrations: An experimental
test of a dual-coding hypothesis. Journal of Educational Psychology, 83(4), 484.
https://doi.org/10.1037/0022-0663.83.4.484.
Mercan, F. C. (2020). Control-value theory and enjoyment of science: A cross-national
investigation with 15-year-olds using PISA 2006 data. Learning and Individual
Differences, 80, 101889. https://doi.org/10.1016/j.lindif.2020.101889.
McElhaney, K. W., Chang, H.-Y., Chiu, J. L., & Linn, M. C. (2014). Evidence for
effective uses of dynamic visualisations in science curriculum materials. Studies
in Science Education, 51(1), 49–85. https://doi.org/10.1080/03057267.2014.9845.
Mkimbili, S. T., Ødegaard, M. (2017). Student Motivation in Science Subjects in
Tanzania, Including Students’ Voices. Research in Science Education.
https://doi.org/10.1007/s11165-017-9677-4.
Moore, E. B., Chamberlain, J. M., Parson, R., & Perkins, K. K. (2014). PhET interactive
simulations: Transformative tools for teaching chemistry. Journal of Chemical
Education, 91(8), 1191-1197. https://doi.org/10.1021/ed4005084.
Moreno, R. (2006). Does the modality principle hold for different media? A test of the
method-affects-learning hypothesis. Journal of Computer Assisted Learning,
22(3), 149–158. https://doi.org/10.1111/j.1365-2729.2006.00170.x.
Moreno, R. (2007). Optimizing learning from animations by minimizing cognitive load:
Cognitive and affective consequences of signaling and segmentation methods.
Applied Cognitive Psychology, 21(6), 765–781. https://doi.org/10.1002/acp.1348.
Najib, M. N. M., Ali, R. M., & Yaacob, A. (2022). Supporting Secondary School
Students’learning of Physics: Exploring The Effects of PhET Simulation and
51
MoPSIF Module. Practitioner Research, 4(1), 71-95.
https://doi.org/10.32890/pr2022.4.5.
Napier, J. D., & Riley, J. P. (1985). Relationship between affective determinants and
achievement in science for seventeen‐year‐olds. Journal of Research in Science
Teaching, 22(4), 365-383. https://doi.org/10.1002/tea.3660220407.
Olalekan, A., & Oludipe, O. (2016). Effect of Computer Simulation Instructional
Strategy on Biology Student's Academic Achievement in DNA replication and
Transcription. Asian Journal of Educational Research, 4(2), 16-24.
Oulmaati, K., Ezzahri, S., & Samadi, K. (2017). The Use of ICT in the learning process
among the students of History and Civilization at Abdelmalek Essaadi University,
Morocco. International Journal of Scientific Research & Engineering Technology
(IJSET), 8(2), 972-979. https://doi.org/ 10.18421/SAR41-04.
Ozdemir, O., & Oner, I. E. (2015). The effects of simulations and animations on
students’ motivation in a computer course. Participatory Educational Research,
2(5), 53-59. http://dx.doi.org/10.17275/per.15.spi.2.7.
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design:
Recent developments. Educational psychologist, 38(1), 1-4.
https://doi.org/10.1207/S15326985EP3801_1.
Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal
of Psychology/Revue canadienne de psychologie, 45(3), 255.
https://doi.org/10.1037/h0084295.
Pedaste, M., Mäeots, M., Leijen, Ä., & Sarapuu, T. (2012). Improving students’ inquiry
skills through reflection and self-regulation scaffolds. Technology, Instruction,
Cognition and Learning, 9(1-2), 81-95.
Penn, M., & Ramnarain, U. (2019). South African university students’ attitudes towards
chemistry learning in a virtually simulated learning environment. Chemistry
Education Research and Practice, 20(4), 699-709. https://doi.org/
10.1039/C9RP00014C.
Perkins, K. (2020). Transforming STEM learning at scale: PhET interactive simulations.
Childhood Education, 96(4), 42-49.
https://doi.org/10.1080/00094056.2020.1796451.
Pfefferova, M. S. (2015). Computer simulations and their influence on students'
understanding of oscillatory motion. Informatics in Education, 14(2), 279-289.
https://doi.org/10.15388/infedu.2015.16.
52
Physlets. (2018). Tracker Video analysis and modeling tool. Retrieved 17/03/2017 from
http://physlets.org/Tracker/.
Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning
components of classroom academic performance. Journal of Educational
Psychology, 82(1), 33. https://doi.org/10.1037/0022-0663.82.1.33.
Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change:
The role of motivational beliefs and classroom contextual factors in the process of
conceptual change. Review of Educational research, 63(2), 167-199.
https://doi.org/10.2307/1170472.
Plomp, T., Pelgrum, W. J., & Law, N. (2007). SITES2006–International comparative
survey of pedagogical practices and ICT in education. Education and Information
Technologies, 12(2), 83-92. https://doi.org/10.1007/s10639-007-9029-5.
Potane, J. D., Bayeta, R. R., Education, S., & Specialist, P. (2018). Virtual learning
through PhET interactive simulation: A proactive approach in improving students’
academic achievement in science. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.3166565.
Prasetya, I. E., Yusuf, M., & Buhungo, T. J. (2022). Description of students learning
motivation towards the use of phet simulation in physics online learning in terms
of self-efficacy and anxiety levels. Jurnal Pijar Mipa, 17(1), 23-28.
https://doi.org/10.29303/jpm.v17i1.3218.
Price, A., Wieman, C., & Perkins, K. (2019). Teaching with simulations. The Science
Teacher, 86(7), 46-52.
Prima, E., Putri, A. R., & Rustaman, N. (2018). Learning Solar System Using PhET
Simulation to Improve Students' Understanding and Motivation. Journal of
Science Learning, 1(2), 60-70. https://doi.org/10.17509/jsl.v1i2.10239.
Reedy, G. B. (2015). Using cognitive load theory to inform simulation design and
practice. Clinical Simulation in Nursing, 11(8), 355-360.
http://dx.doi.org/10.1016/j.ecns.2015.05.004.
Rodrigues, M., & Carvalho, P. S. (2014). Teaching optical phenomena with
Tracker. Physics Education, 49(6), 671. https://10.1088/0031-9120/49/6/671.
Rozenszayn, R., & Ben-Zvi Assaraf, O. (2011). When collaborative learning meets
nature: Collaborative learning as a meaningful learning tool in the ecology inquiry
based project. Research in Science Education, 41(1), 123-146.
https://doi.org/10.1007/s11165-009-9149-6.
53
Roh, Y. S., & Kim, S. S. (2015). Integrating problem-based learning and simulation:
Effects on student motivation and life skills. CIN: Computers, Informatics,
Nursing, 33(7), 278-284. https://doi.org/10.1097/CIN.0000000000000161.
Rutten, N., van der Veen, J. T., & van Joolingen, W. R. (2015). Inquiry-based wholeclass teaching with computer simulations in physics. International Journal of
Science Education, 37(8), 1225-1245.
https://doi.org/10.1080/09500693.2015.1029033.
Salame, I. I., & Makki, J. (2021). Examining the use of PhET Simulations on students’
attitudes and learning in general chemistry II. Interdisciplinary Journal of
Environmental and Science Education, 17(4), e2247.
https://doi.org/10.21601/ijese/10966.
Sarabando, C., Cravino, J. P., & Soares, A. A. (2014). Contribution of a computer
simulation to students’ learning of the physics concepts of weight and
mass. Procedia Technology, 13, 112-121. https://doi.org/112-121.
10.1016/j.protcy.2014.02.015.
Saudelli, M. G., Kleiv, R., Davies, J., Jungmark, M., & Mueller, R. (2021). PhET
Simulations in Undergraduate Physics: Constructivist Learning Theory in
Practice. Brock Education Journal, 31(1).
https://doi.org/10.26522/brocked.v31i1.899.
Savinainen, A., & Scott, P. (2002). The Force Concept Inventory: a tool for monitoring
student learning. Physics Education, 37(1), 45. https://doi.org/10.1088/0031-
9120/37/1/306.
Shapiro, S. S., Wilk, M. B., & Chen, H. J. (1968). A comparative study of various tests
for normality. Journal of The American Statistical Association, 63(324), 1343-
1372. https://doi.org/10.2307/2285889
Shumow, L., Schmidt, J., & Zaleski, D. (2013). Multiple perspectives on student
learning, engagement, and motivation in high school biology labs. The High
School Journal, 96(3), 232–252. https://doi.org/10.2307/23351976.
Silva, E. (2009). Measuring skills for 21st-century learning. Phi Delta Kappan, 90(9),
630-634. https://doi.org/10.1177/003172170909000905.
Singh, K. (2011). Study of achievement motivation in relation to academic achievement
of students. International Journal of Educational Planning &
54
Administration, 1(2), 161-171.
Susilawati, A., Yusrizal, Y., Halim, A., Syukri, M., Khaldun, I., & Susanna, S. (2022).
The Effect of Using Physics Education Technology (PhET) Simulation Media to
Enhance Students’ Motivation and Problem-Solving Skills in Learning Physics.
Jurnal Penelitian Pendidikan IPA, 8(3), 1166-1170.
https://doi.org/10.29303/jppipa.v8i3.1571.
Sweller, J., Ayres, P., Kalyuga, S., Sweller, J., Ayres, P., & Kalyuga, S. (2011). Intrinsic
and extraneous cognitive load. Cognitive Load Theory, 57-69.
https://doi.org/10.1007/978-1-4419-8126-4.
Tokan, M. K., & Imakulata, M. M. (2019). The effect of motivation and learning
behaviour on student achievement. South African Journal of Education, 39(1).
https://doi.org/10.15700/saje.v39n1a1510.
Tuyboevna, K. S. (2021). About the use of interactive method and phet electronic
resource in educational process. Middle European Scientific Bulletin, 8.
https://doi.org/10.47494/mesb.2021.2.164.
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control,
intrinsic motivation, and emotion into the technology acceptance model.
Information Systems Research, 11(4), 342-365.
https://doi.org/10.1287/isre.11.4.342.11872.
Wang, H. H., Lin, H. S., Chen, Y. C., Pan, Y. T., & Hong, Z. R. (2021). Modeling
relationships among students’ inquiry-related learning activities, enjoyment of
learning, and their intended choice of a future STEM career. International Journal
of Science Education, 43(1), 157-178.
https://doi.org/10.1080/09500693.2020.1860266.
Wang, T. L., & Tseng, Y. K. (2018). The comparative effectiveness of physical, virtual,
and virtual-physical manipulatives on third-grade students’ science achievement
and conceptual understanding of evaporation and condensation. International
Journal of Science and Mathematics Education, 16(2), 203-219.
https://doi.org/10.1007/s10763-016-9774-2.
Wee, L. K., Chew, C., Goh, G. H., Tan, S., & Lee, T. L. (2012). Using Tracker as a
pedagogical tool for understanding projectile motion. Physics Education, 47(4),
448. https://doi.org/10.1088/0031-9120/47/4/448.
55
Wee, L. K., Tan, K. K., Leong, T. K., & Tan, C. (2015). Using Tracker to understand
‘toss up’and free fall motion: a case study. Physics Education, 50(4), 436.
https://doi.org/10.48550/arXiv.1501.02858.
Wen, C. T., Liu, C. C., Chang, H. Y., Chang, C. J., Chang, M. H., Chiang, S. H. F., ... &
Hwang, F. K. (2020). Students’ guided inquiry with simulation and its relation to
school science achievement and scientific literacy. Computers & Education, 149,
103830. https://doi.org/10.1016/j.compedu.2020.103830.
Wolters, C.A. (1999). The relation between high school students’ motivational
regulation and their use of learning strategies, effort, and classroom performance.
Learning and Individual Differences, 11(3), 281–300.
https://doi.org/10.1016/S1041-6080(99)80004-1.
Zacharia, Z. C., & De Jong, T. (2014). The effects on students’ conceptual
understanding of electric circuits of introducing virtual manipulatives within a
physical manipulatives-oriented curriculum. Cognition and instruction, 32(2),
101-158. https://doi.org/10.1080/07370008.2014.887083.

無法下載圖示 全文公開日期 2025/08/30 (校內網路)
全文公開日期 2025/08/30 (校外網路)
全文公開日期 2025/08/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE