簡易檢索 / 詳目顯示

研究生: 翁廷維
Ting-Wei Weng
論文名稱: 奈米碳管束面積對場發射特性的影響
Area Effect of Patterned Carbon Nanotube Bundle on Electron Field Emission Characteristics
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 黃鶯聲
Ying-Sheng Huang
葉文昌
Wen-chang Yeh
邱博文
Po-Wen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 74
中文關鍵詞: 電子場發射圖形化奈米碳管束奈米碳管化學氣相沈積
外文關鍵詞: Chemical vapor deposition, Field emission display, Pattern, Carbon nanotubes
相關次數: 點閱:200下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用熱化學氣相沉積法成長圖形化的奈米碳管束。利用微影製程在矽基板上製作出不同半徑與不同間距的圖形化。改變不同的成長時間來控制奈米碳管束的高度。鐵當做觸媒金屬層,鋁為緩衝層。成長碳管的最佳條件為鐵薄膜厚度3 nm、鋁薄膜厚度5 nm、退火1小時和在750℃的條件下通乙炔。有論文指出當奈米碳管的間距比上奈米碳管的高度為2時,奈米碳管擁有最佳的場發射特性。在本篇論文中,奈米碳管束間距與奈米碳管束高度的比例被設定為2。改變不同的奈米碳管束面積,並討論其與場發射特性的關係。由實驗結果發現當奈米碳管束的面積佔總面積的46%時,奈米碳管陣例擁有最低的臨界電場,此臨界電場為0.7 V/um 。


    Patterned carbon nanotube (CNT) bundles were fabricated using the thermal chemical vapor deposition (CVD) method. The catalyst metal layer and buffer layer were Fe and Al, respectively, for CNT bundle growth. The optimal growth conditions were found to be Fe (3 nm), Al (5 nm), annealing for 1 hr and C2H2 flowing at 750℃. Patterns of different diameters and distances were defined on Si (100) substrates using photolithography. Bundle height was controlled using different hydrocarbon flow times. The inter-bundle distance to bundle height ratio was maintained at 2, a number predicted to have a maximum field emission for CNT, and left the patterned CNT bundle area as a variable parameter. The relationship between this area and the electron field emission characteristics was studied. The lowest threshold electric field of 0.7 V/um was obtained when the total area of patterned CNT bundles was approximately 46%.

    Abstract (in Chinese)---------------------------------------------------------I Abstract (in English)--------------------------------------------------------II Acknowledgement (in Chinese)------------------------------------------------III Contents---------------------------------------------------------------------IV Figure captions-------------------------------------------------------------VII Table list------------------------------------------------------------------XII Chapter 1 Introduction--------------------------------------------------------1 1.1 Motivation-----------------------------------------------------------1 1.2 Historical introduction of carbon nanotubes--------------------------3 1.3 Electrical properties of carbon nanotubes----------------------------5 1.4 Carbon nanotubes fabrication----------------------------------------------5 1.4.1 Thermal chemical vapor deposition-----------------------------------6 1.5 The carbon nanotubes growth mechanism-------------------------------------7 1.5.1 Growth with catalyst------------------------------------------------8 1.5.1.1 Carbon diffusion through catalyst particles-------------------8 1.5.1.2 Base-growth model and tip-growth model-----------------------9 1.5.2 Open-ended and close-ended growth model--------------------------10 1.6 Field emission-----------------------------------------------------------11 1.6.1 Theory of field emission---------------------------------------------------11 1.6.2 Parameters that affect the emission property of CNTs-----------14 1.6.3 Cold cathode structures and materials for field emission display-------------------------------------------------------------15 Chapter 2 Experimental-------------------------------------------------------18 2.1 Experiment procedure-----------------------------------------------------18 2.2 Deposition system-thermal chemical vapor deposition for carbon nanotubes-----------------------------------------------------------------22 2.3 Coating system-thermal evaporation for catalyst synthesis---------------24 2.4 Characterization and analysis of carbon nanotubes-----------------------27 2.4.1 Scanning electron microscope system----------------------------27 2.4.2 High resolution transmission electron microscopy---------------27 2.4.3 Micro-Raman spectroscopy system--------------------------------27 2.4.4 I-V measurement------------------------------------------------28 2.5 Field emission measurement system----------------------------------------28 Chapter 3 Results and discussion---------------------------------------------30 3.1 Synthesis and characteristics of carbon nanotubes using thermal chemical vapor deposition-------------------------------------------------30 3.1.1 The effect of Fe catalyst thickness----------------------------30 3.1.2 The effect of Al buffer layer thickness------------------------33 3.1.3 The deposition temperature effect------------------------------36 3.1.4 The optimal condition for carbon nanotube growth---------------39 3.1.5 Carbon nanotube high resolution transmission electron microscopy results----------------------------------------------41 3.1.6 Raman spectroscopy results of carbon nanotubes-----------------44 3.2 Scanning electron microscope images and field emission properties of different carbon nanotube arrays-----------------------------------45 3.2.1 Carbon nanotube bundles at different diameters with an inter-bundle distance of 5 um----------------------------------45 3.2.2 Carbon nanotube bundles at different diameters with an inter-bundle distance of 10 um----------------------------------50 3.2.3 Carbon nanotube bundles at different diameters with an inter-bundle distance of 25 um----------------------------------54 3.2.4 Carbon nanotube bundles at different diameters with an inter-bundle distance of 50 um---------------------------------58 3.2.5 Comprehensive comparison of different diameters and different inter-bundle distances------------------------------------------63 Chapter 4 Conclusion---------------------------------------------------------66 References-------------------------------------------------------------------67

    1. J.-L. Kwo, M. Yokoyama, and I.-N. Lin, “Effects of composition on field emissioncharacter of tetrahedral amorphous carbon”, Appl. Surf. Sci. Vol.142, pp.521-526(1999).
    2. J. Kürti, V. Zólyomi, M. Kertesz, G. Sun, R. H. Baughman, and H. Kuzmany, “Individualities and average behavior in the physical properties of small diameter single-walled carbon nanotubes”, Carbon Vol.42, pp.971-978(2004).
    3. P. Jaroenapibal, D. E. Luzzi, S. Evoy, and S. Arepalli, “Transmission-electron-microscopic studies of mechanical properties of single-walled carbon nanotube bundles”, Appl. Phys. Lett. Vol.85, pp.4328-4330(2004).
    4. J. L. Li, G. Z. Bai, J. W. Feng, and W. Jiang, “Microstructure and mechanical properties of hot-pressed carbon nanotubes compacted by spark plasma sintering”, Carbon Vol.43, pp.2649-2653(2005).
    5. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett. Vol.76, pp.2071-2073(2000).
    6. O. Gröning, O. M. Küttel, Ch. Emmenegger, P. Gröning, and L. Schlapbach, “Field emission properties of carbon nanotubes”, Vacuum Vol.18, pp.665-678(2000).
    7. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties”, Science Vol.283, pp.512-514(1999).
    8. Y. C. Choi, Y. M. Shin, D. J. Bae, S. C. Lim, Y. H. Lee, and B. S. Lee, “Patterned growth and field emission properties of vertically aligned carbon nanotubes”, Diam. Relat. Mater. Vol.10, pp.1457-1464(2001).
    9. S. Huang, A. W. H. Mau, T. W. Turney, P. A. White, and L. Dai, “Patterned Growth of Well-Aligned Carbon Nanotubes: A Soft-Lithographic Approach”, J. Phys. Chem. B Vol.104, pp.2193-2196(2000).
    10. V. B. Golovko, H. W. Li, B. Kleinsorge, S. Hofmann, J. Geng, M. Cantoro, Z. Yang, D. A. Jefferson, B. F. G. Johnson, W. T. S. Huck, and J. Robertson, “Submicron patterning of Co colloid catalyst for growth of vertically aligned carbon nanotubes”, Nanotechnology Vol.16, pp.1636-1640(2005).
    11. S. M. C. Vieira, K. B. K. Teo, W. I. Milne, Oliver Gröning, L. Gangloff, E. Minoux, and P. Legagneux, “Investigation of field emission properties of carbon nanotube arrays defined using nanoimprint lithography”, Appl. Phys. Lett. Vol.89, pp.022111-022113(2006).
    12. S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, D. Z. Wang, and Z. F. Ren, “Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties”, Appl. Phys. Lett. Vol.82, pp.3520-3522(2003).
    13. S. Iijima, “Helical microtubules of graphitic carbon”, Nature Vol.354, pp.56-58(1991).
    14. M. Katayama, K.-Y. Lee, S. Honda, T. Hirao, and K. Oura, “Ultra-Low-Threshold Field Electron Emission from Pillar Array of Aligned Carbon Nanotube Bundles”, Jpn. J. Appl. Phys. Vol.43, pp.L774-L776(2004).
    15. S. Fujii, S. I. Honda, H. Machida, H. Kawai, K. Ishida, M. Katayama, H. Furuta, T. Hirao, and K. Oura, “Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect”, Appl. Phys. Lett. Vol.90, pp.153108-153110(2007).
    16. S. Iijima and T. lchihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature Vol.363, pp.603-605(1993).
    17. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature Vol.363, pp.605-607(1993).
    18. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Carbon fibers based on C60 and their symmetry”, Phys. Rev. B Vol.45, pp.6234-6242(1992).
    19. J. W. Mintmire, B. I. Dunlap, and C. T. White, “Are fullerene tubules metallic?”, Phys. Rev. Lett. Vol.68, pp.631-634(1992).
    20. N. Hamada, S. Sawada, and A. Oshiyama, “New one-dimensional conductors: Graphitic microtubules”, Phys. Rev. Lett. Vol.68, pp.1579-1581(1992).
    21. J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes”, Nature Vol.391, pp.59-62(1998).
    22. T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature Vol.391, pp.62-64(1998).
    23. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes”, Science Vol.273, pp.483-487(1996).
    24. K.-Y. Lee, S.-I. Honda, M. Katayama, T. Kuzuoka, Y.-G. Baek, S. Ohkura, K. Aoki, T. Hirao, and K. Oura, “Synthesis of conical Si array on Si(100) for a field electron emitter by plasma-enhanced chemical vapor deposition”, Thin Solid Films Vol.464-465, pp.194-198(2004).
    25. Y. H. Lee, S. G. Kim, and D. Tománek, “Catalytic Growth of Single-Wall Carbon Nanotubes: An Ab Initio Study”, Phys. Rev. Lett. Vol.78, pp.2393-2396(1997).
    26. S. Arapelli and C. D. Scott, “Spectral measurements in production of single-wall carbon nanotubes by laser ablation”, Chem. Phys. Lett. Vol.302, pp.139-145(1999).
    27. F. Kokai, K. Takahashi, M. Yudasaka and S. Iijima, ”Emission Imaging spectroscopic and shadowgraphic Studies on the Growth Dynamics of Graphitic Carbon Particles Synthesized by CO2 Laser Vaporization”, J. Phys. Chem. B Vol.103, pp.8686-8693(1999).
    28. A. Grobunov, O. Jost, W. Pompe, and A. Graff, “Solid–liquid–solid growth mechanism of single-wall carbon nanotubes”, Carbon Vol.40, pp.113-118(2002).
    29. Y. Saito, “Nanoparticles and filled nanocapsules”, Carbon Vol.33, pp.979-988(1995).
    30. C. J. Lee and J. Park, “Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition”, Appl. Phys. Lett. Vol.77, pp.3397-3399(2000).
    31. X. B. Wang, W. P. Hu, Y. Q. Liu, C. F. Long, Y. Xu, S. Q. Zhou, D. B. Zhu, and L. Dai, “Bamboo-like carbon nanotubes produced by pyrolysis of iron(II) phthalocyanine”, Carbon Vol.39, pp.1533-1536(2001).
    32. Z. Y. Juang, I. P. Chien, J. F. Lai, T. S. Lai, and C. H. Tsai, “The effects of ammonia on the growth of large-scale patterned aligned carbon nanotubes using thermal chemical vapor deposition method”, Diam. Relat. Mater. Vol.13, pp.1203-1209(2004).
    33. M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition”, J. Appl. Phys. Vol.90, pp.5308-5317(2001).
    34. X. F. Zhang, A. Y. Cao, B. Q. Wei, Y. H. Li, J. Q. Wei, C. Xu, and D. Wu, “Rapid growth of well-aligned carbon nanotube arrays”, Chem. Phys. Lett. Vol.362, pp.285-290(2002).
    35. S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Norskov, “Atomic-scale imaging of carbon nanofibre growth”, Nature Vol.427, pp.426-429(2004).
    36. C. Ducati, I. Alexandrou, M. Chhowalla, J. Robertson, and G. A. J. Amaratunga, “The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition”, J. Appl. Phys. Vol.95, pp.6387-6391(2004).
    37. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure and growth mechanism of carbon tubules”, Mater. Sci. Eng. B Vol.19, pp.185-191(1993).
    38. R. H. Fowler and L. W. Nordheim, “Electron Emission in Intense Electric Fields”, Proc. R. Soc. London A Vol.119, pp.173(1928).
    39. R. E. Burgess, H. Kroemer, and J. M. Honston, “Corrected value of Fowler-Norheim field emission function v(y) and s(y)”, Phys. Rev. Vol.1, pp. 515-517(1953).
    40. W. A. De Heer, A. Chatelain, and D. Ugrate, “A Carbon Nanotube Field-Emission Electron Source”, Science Vol.270, pp.1179-1180(1995).
    41. J. M. Bonard, J. P. Salvetat, T. Stöckli, W. A. D. Heer, L. Forró, and A. Châtelain, “Field emission from single-wall carbon nanotube films”, Appl. Phys. Lett. Vol.73, pp.918-920(1998).
    42. J. M. Bonard , J. P. Salvetat, and T. Stockli, “Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism”, Appl. Phys. A Vol.69, pp.245-254(1999).
    43. Y. Saito and S. Uemura, ” Field emission from carbon nanotubes and its application to electron sources”, Carbon Vol.38, pp.169-182(2000).
    44. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display“, Appl. Phys. Lett. Vol.75, pp.3129-3132(1999).
    45. T. Dorota, ”Recent progress in field emitter array development for high Performance applications”, Materials Science and Engineering Vol.24, pp. 185-239(1999).
    46. C. A. Spindt, I. Brodie, L. Humpnrey, and E. R. Westerberg, “Physical properties of thin-film field emission cathodes with molybdenum cones,” J. Appl. Phys. Vol.47, pp.5248-5263(1976).
    47. G. H. Chen, R. Q. Cai, X. M. Song, and J. X. Deng, ” Preparation and field electron emission of microcrystalline diamond deposited on a porous silicon substrate”, Materials Science and Engineering B Vol.107, pp.233–236(2004).
    48. C.-F. Chen and H.-C. Hsieh, ” Emission current influence of gated structure and diamond emitter morphologies in triode-type field emission arrays”, Diam. Relat. Mater. Vol.9, pp.1257–1262(2000).
    49. W. Rivera, J. M. Perez, R. S. Ruoff, D. C. Lorents, R. Malhotra, S. Lim, Y. G. Rho, E. G. Jacobs, and R. F. Pinizzotto, ” Scanning tunneling microscopy current–voltage characteristics of carbon nanotubes”, J. Vac. Sci. Technol. B Vol.13, pp.327-330(1995).
    50. K. Ehara, S. Kanemaru, T. Matsukawa, and J. Itoh, ” Improvement of electron emission characteristics of Si field emitter arrays by surface modification”, Appl. Surf. Sci. Vol.146, pp.172-176(1999).
    51. Y. Nakajima, A. Kojima, and N. Koshida, “Generation of ballistic electrons in nanocrystalline porous silicon layers and its application to a solid-state planar luminescent device”, Appl. Phys. Lett. Vol.81, pp.2472-2474(2002).
    52. E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, and T. Nakagiri, “A 10-in. surface-conduction electron-emitter display”, J. SID. Vol.5, pp.345-348(1997).
    53. X.-Q. Wang, Y.-B. Xu, H.-L. Ge, and M. Wang, “Optimization for field emission from carbon nanotubes array in hexagon”, Diam. Relat. Mater. Vol.15, pp.1565-1569(2006).
    54. R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, and R. K. Tsui, “Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst”, Nano Lett. Vol.3, pp.731-735(2003).
    55. Q. Jiang, H. Y. Tong, D. T. Hsu, K. Okuyama, and F.G. Shi, ” Thermal stability of crystalline thin films”, Thin Solid Films Vol.312, pp.357-361(1998).
    56. M. J. Bronikowski, “CVD growth of carbon nanotube bundle arrays”, Carbon Vol.44, pp.2822–2832(2006).
    57. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization”, Appl. Phys. A Vol.67, pp.29-33(1998).
    58. T. de los Arcos, F. Vonau, M. G. Garnier, V. Thommen, H. -G. Boyen, P. Oelhafen, M. Düggelin, D. Mathis, and R. Guggenheim, “Influence of iron–silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition”, Appl. Phys. Lett. Vol.80, pp.2383-2385(2002).
    59. V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, “Effects of spatial separation on the growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett. Vol.80, pp.476-478(2002).
    60. K. B. K Teo, M. Chhowalla, G. A. J. Amaratunga, W. L. Milne, G. Pirio, P. Legagneux, F. Wyczisk, J. Olivier, and D. Pribat, “Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy”, J. Vac. Sci. Technol. B Vol.20, pp.116-121(2002).
    61. T. de los Arcos, Z. M. Wu, and P. Oelhafen, “Is aluminum a suitable buffer layer for carbon nanotube growth?”, Chem. Phys. Lett. Vol.380, pp.419–423(2003).
    62. I. T. Han, B. K. Kim, H. J. Kim, M. Yang, Y. W. Jin, S. Jung, N. Lee, S. K. Kim, and Jong Min Kim, “Effect of Al and catalyst thicknesses on the growth of carbon nanotubes and application to gated field emitter arrays”, Chem. Phys. Lett. Vol.400, pp.139–144(2004).
    63. V. L. Kuznetsov, A. N. Usoltseva, A. L. Chuvilin, E. D. Obraztsova, and Jean-Marc Bonard, “Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of carbon nanotubes”, Phys. Rev. B Vol.64, pp.235401-235407(2001).
    64. H. S. Kang, H. J. Yoon, C. O. Kim, J. P. Hong, I. T. Han, S. N. Cha, B. K. Song, J. E. Jung, N. S. Lee, and J. M. Kim, “Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system”, Chem. Phys. Lett. Vol.349, pp.196-200(2001).

    QR CODE